# Towards an Empirical Theory of Deep Learning

Preetum Nakkiran

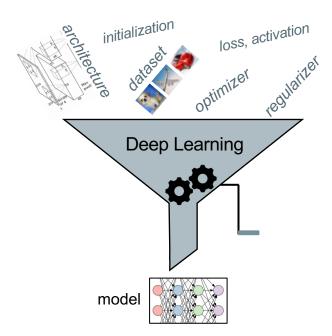
Thesis Defense. July 12, 2021 Advisors: Boaz Barak & Madhu Sudan



## What is Deep Learning?

#### Deep Learning (informal):

A set of *ingredients* that can be combined to solve a certain *learning problems* 



## What is Deep Learning?

Very successful in practice:

- Solved "hard" problems
- Solved "new" problems

#### Mastering the game of Go without human knowledge

 $David \ Silver^{l*}, \ Julian \ Schrittwieser^{l*}, \ Karen \ Simonyan^{l*}, \ Ioannis \ Antonoglou^l, \ Aja \ Huang^l, \ Arthur \ Guez^l,$ Thomas Hubert<sup>1</sup>, Lucas Baker<sup>1</sup>, Matthew Lai<sup>1</sup>, Adrian Bolton<sup>1</sup>, Yutian Chen<sup>1</sup>, Timothy Lillicrap<sup>1</sup>, Fan Hui<sup>1</sup>, Laurent Sifre<sup>1</sup>,

#### **ImageNet Classification with Deep Convolutional** Neural Networks

Alex Krizhevsky University of Toronto

Ilya Sutskever University of Toronto kriz@cs.utoronto.ca ilya@cs.utoronto.ca

Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca

The New Hork Times

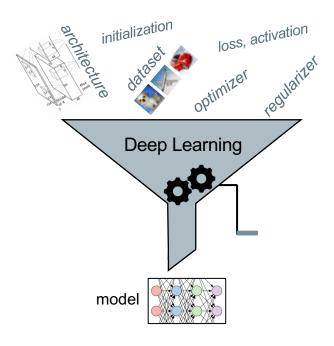
## 'IT WILL CHANGE EVERYTHING': AI MAKES GIGANTIC LEAP IN

DeepMind's program for determining the 3D shapes of proteins stands to transform biology, say scientists.

#### Meet GPT-3. It Has Learned to Code (and Blog and Argue).

The latest natural-language system generates tweets, pens poetry, summarizes emails, answers trivia questions, translates languages and even writes its own computer programs.

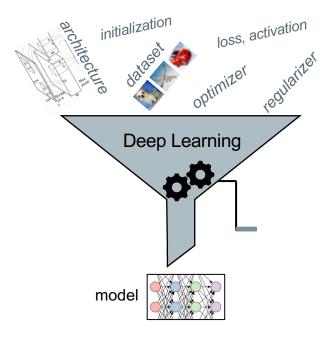
## Advances are *Unpredictable*



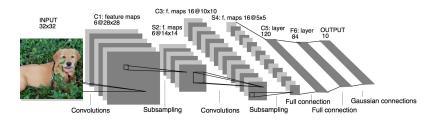
Every advance = new choice of "ingredients"

Surprised by which choices work!

## Advances are *Unpredictable*

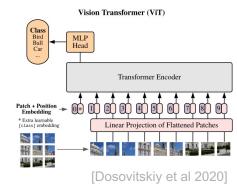


#### ~1998-2020: ConvNets dominate vision



[LeCun et al 1998]

#### 2020: *Transformers* (from NLP) dominate vision

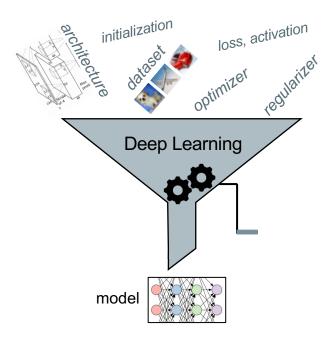


## **Deep Learning Practice**



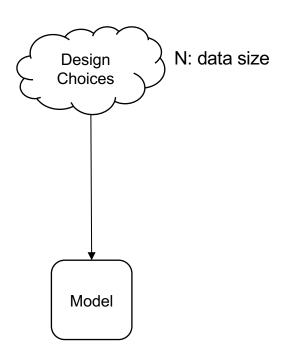
[https://www.flickr.com/photos/sdasmarchives/4590501514]

## **Guiding Question**



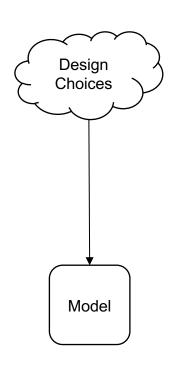
" How does what we **do** affect what we **get?**"

## **Guiding Question**



" How does what we **do** affect what we **get?**"

## Obstacles to Mathematical Rigor

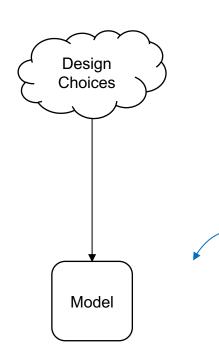


"Theorem: **Deep neural nets** with design choices X, on **task Y**, have performance F(X, Y)"

Not even too hard. Too ill-defined!

- Can't define "deep neural nets"
   (big enough to include practice, small enough to exclude P/poly)
- 2. Can't define the tasks they solve (Vision, NLP,...)

## The Two Cultures



### **Empirical Theory in Physics:**

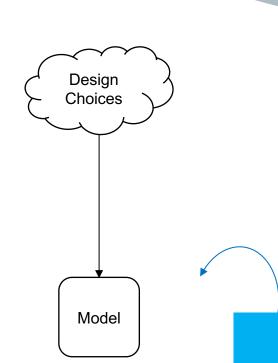
- Kepler's **Laws**
- Ideal Gas **Law**
- Hooke's **Law**
- ...

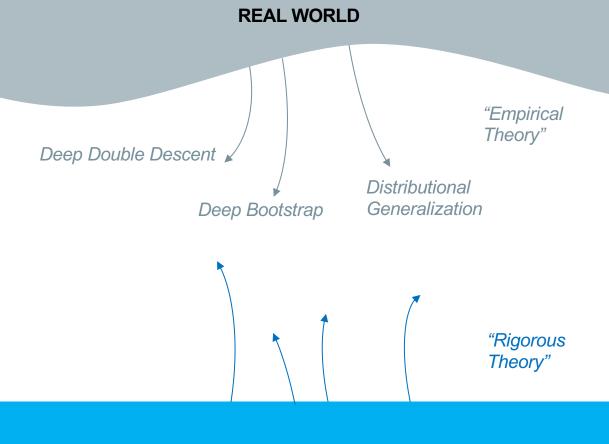
characterize first; prove later!



**MATHEMATICS** 

## The Two Cultures





**MATHEMATICS** 

## **BACKGROUND**

"what do we do?"

## **Supervised Classification**

#### Setup:

Distribution D over pairs (input, label):  $D \in \Delta(X \times Y)$ 

Ex: Image Classification

#### **Given:**

IID samples from distribution  $(x_i, y_i) \sim D$ 

## · ·

, 'cat')



, 'dog')



, 'cat')



, 'dog')

#### Want:

Find function  $f: X \to Y$  with small test error:

$$TestError(f) := \Pr_{x,y \sim D}[f(x) \neq y]$$



#### What we want:

Function 
$$f: \mathcal{X} \to \mathcal{Y}$$
 with small: TestError $(f) := \Pr_{x,y \sim D}[f(x) \neq y]$ 

#### What we do:

- 1. Pick a parametric family of functions  $\mathcal{F}$  ("neural network architecture") search for  $f_{\theta} \in \mathcal{F}$
- 2. Draw N samples from distribution:  $\{(x_i, y_i)\}$  ("train set")
- 3. Try to "fit" the train set. Find  $\theta$  to minimize:

$$L(\theta) = \text{TrainError}(f_{\theta}) \coloneqq \frac{1}{N} \sum_{i} \mathbb{I}[f_{\theta}(x_i) \neq y_i]$$

Minimize  $L(\theta)$  via a local optimizer (e.g. Stochastic Gradient Descent)

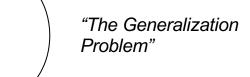
#### What we want:

Small

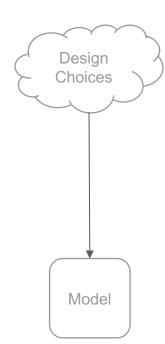
TestError
$$(f) := \Pr_{x,y \sim D}[f(x) \neq y]$$

#### What we do:

Minimize (via SGD) TrainError $(f_{\theta}) \coloneqq \frac{1}{N} \sum_{i} \mathbb{I}[f_{\theta}(x_i) \neq y_i]$ 



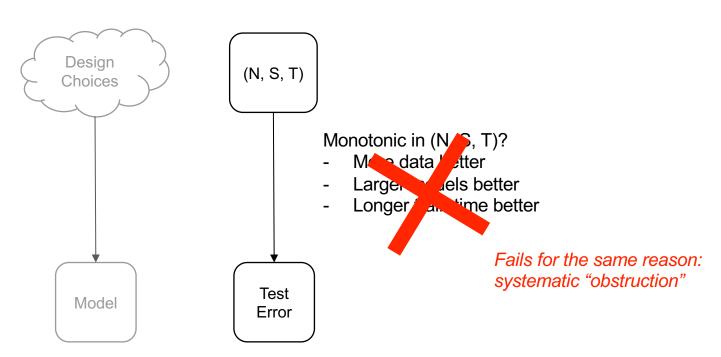
## PART I: DEEP DOUBLE DESCENT

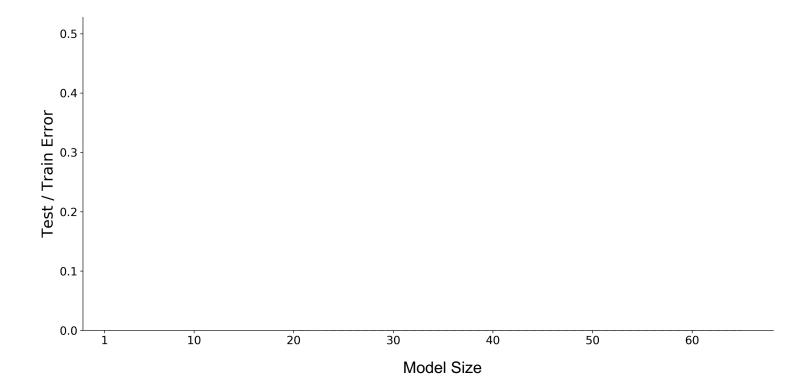


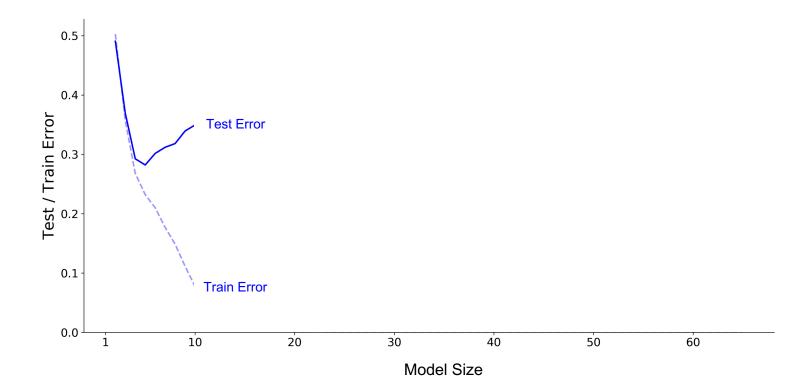
N: Num. samples

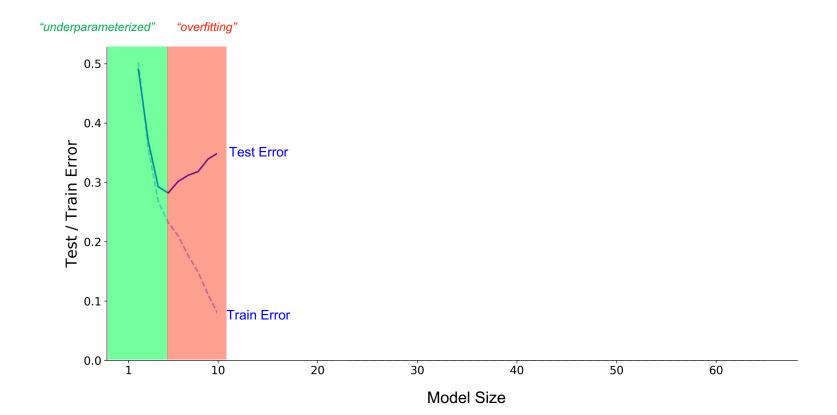
S: Model size

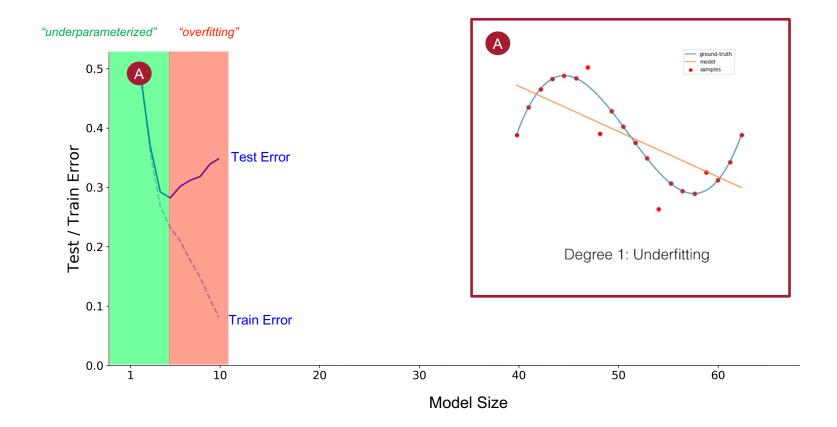
T: Train time (optimization steps)

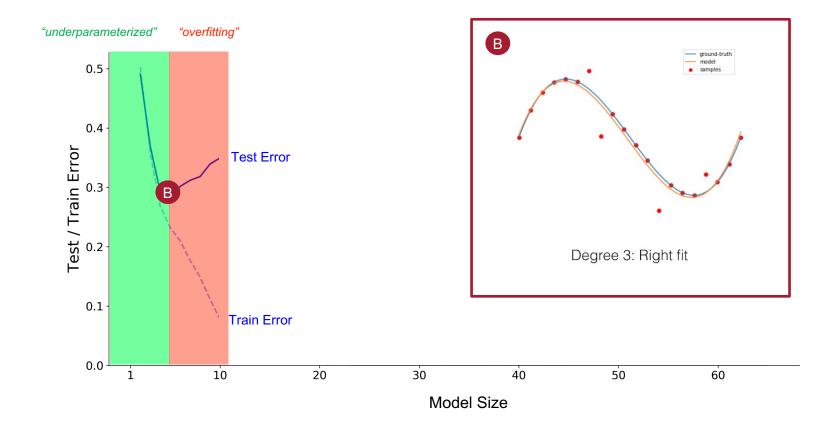


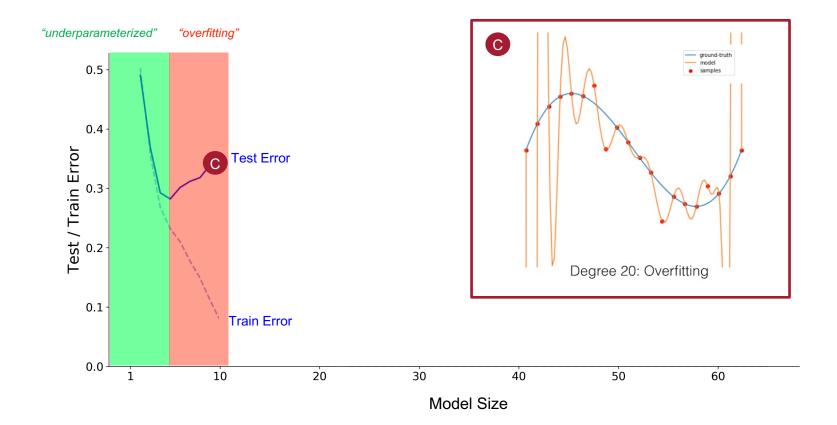


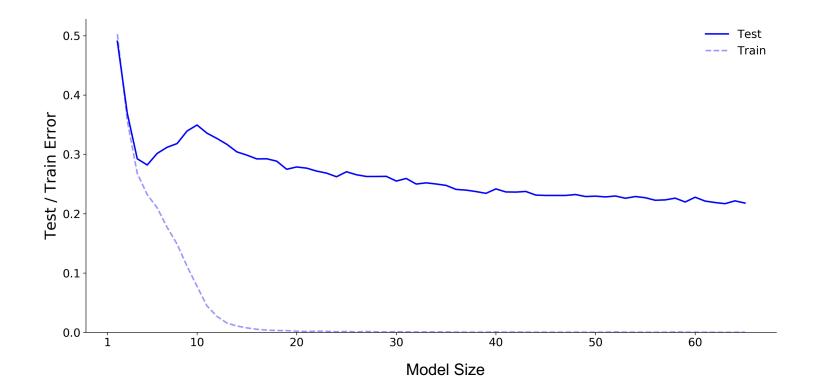


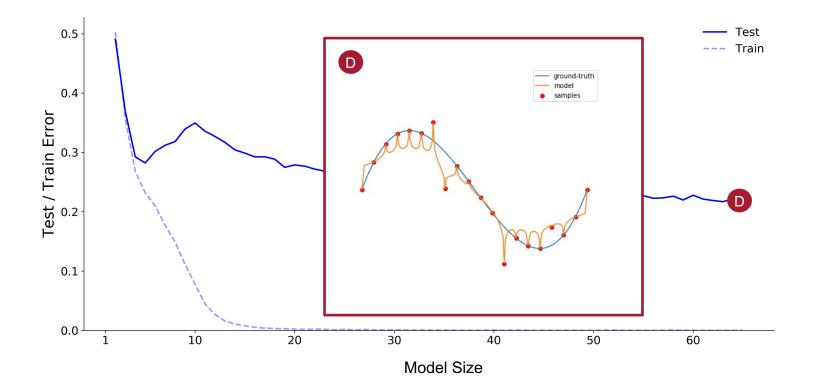


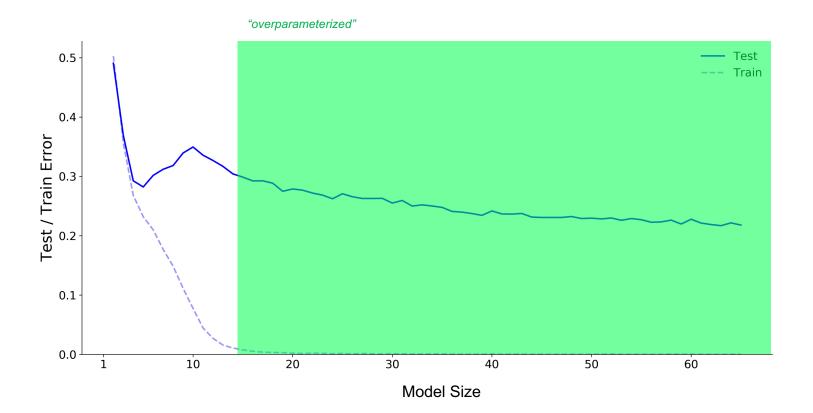




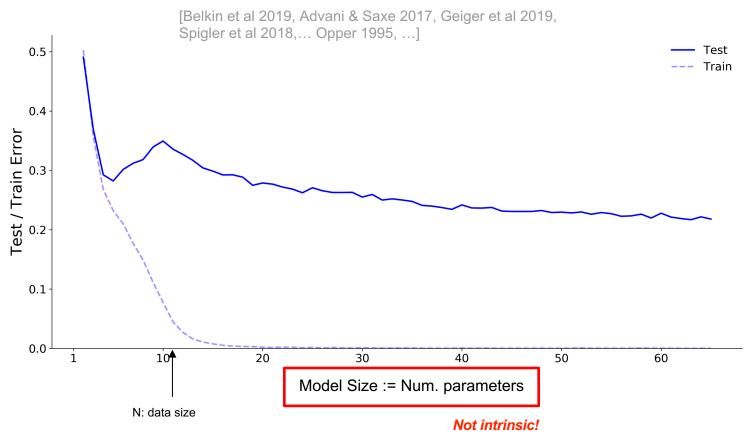






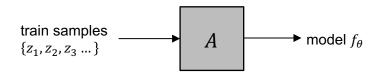


#### "Double Descent"



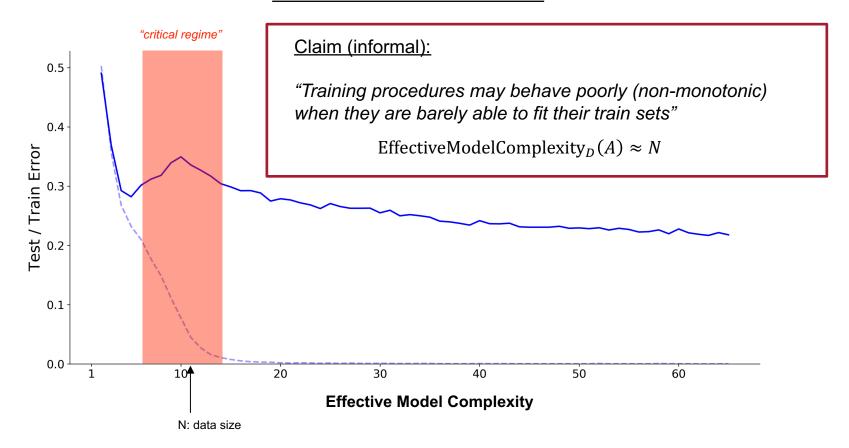
### **Our Contributions**

1. Generalized "model size" to the *entire training procedure A* 



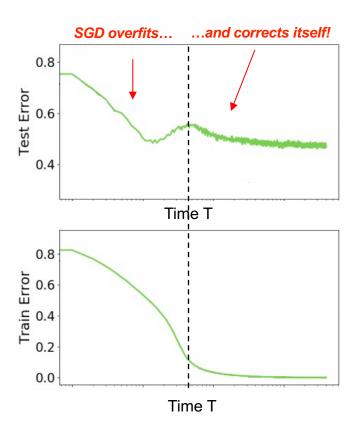
EffectiveModelComplexity $_D(A) :=$  "max num. samples  $\{z_i\} \sim D$  that A fits to  $\approx 0$  train error"

#### Generalized Double Descent



### **New Behaviors**

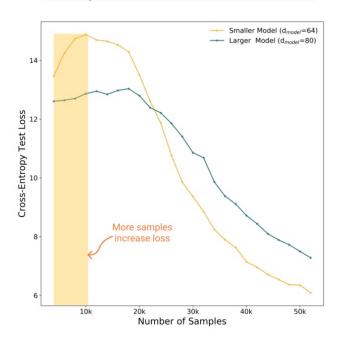
Fix large model, increase optimization steps (T): <u>Epoch-wise double descent</u>



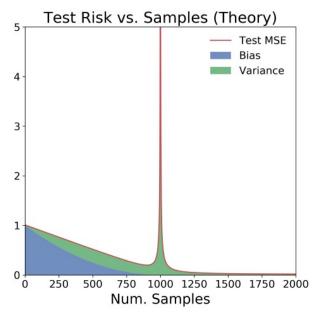
### **New Behaviors**

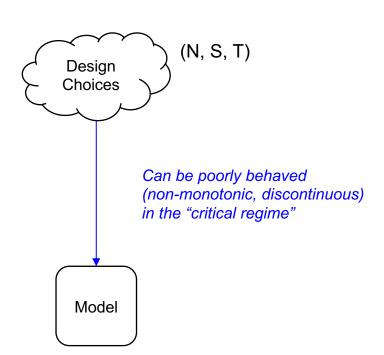
Fix model size, train steps. Increase data-size (N).

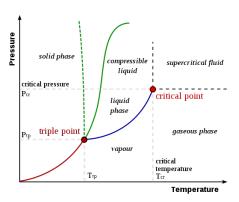
#### Sample-wise double descent

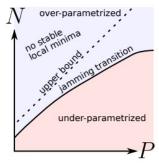


## Training on more data can hurt performance!

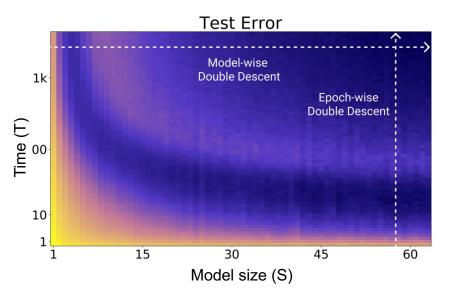


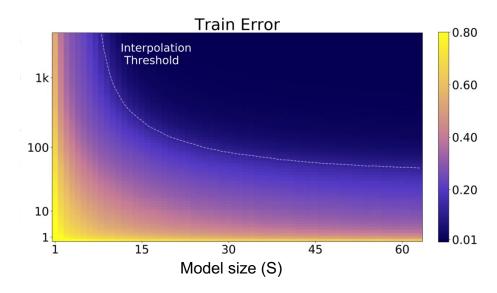






[Spigler, Geiger et al 2019, ...]

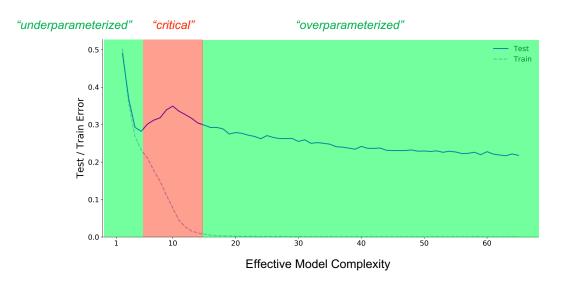




## **Lessons for Theory**

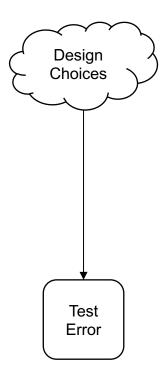
Tight generalization bound must either:

- 1. Non-monotonic in {data size, model size, train time}
- 2. Not apply in the "critical regime"
  - Stay in "overparameterized" or "underparameterized"



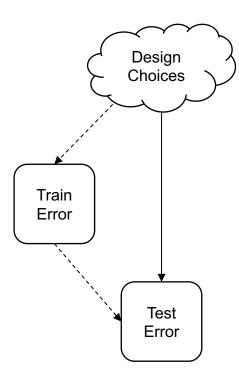
## PART II: THE DEEP BOOTSTRAP FRAMEWORK

## **Generalization Frameworks**



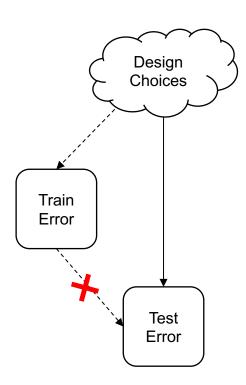
## **Generalization Frameworks**

"Empirical Risk Minimization Framework"



## **Generalization Frameworks**

"Empirical Risk Minimization Framework"



Any "big enough" network can have Train Error  $\approx 0$ 

[Zhang et al. 2016]

Main Idea: compare Real World vs. Ideal World

Fix distribution D, architecture  $\mathcal{F}$ , num samples n. Then, for all steps  $t \in \mathbb{N}$  define:

## Real World(n, t)



Main Idea: compare Real World vs. Ideal World

Fix distribution D, architecture  $\mathcal{F}$ , num samples n.

Then, for all steps  $t \in \mathbb{N}$  define:

#### Real World(n, t)

- Sample train set  $S \sim D^n$
- Initialize architecture  $f_0$  from  $\mathcal{F}$
- For *t* steps:
  - Sample minibatch from S
  - Gradient step on minibatch
- Output  $f_t$

**Ideal World(t)** 



Main Idea: compare Real World vs. Ideal World

Fix distribution D, architecture  $\mathcal{F}$ , num samples n.

Then, for all steps  $t \in \mathbb{N}$  define:

#### Real World(n, t)

- Sample train set  $S \sim D^n$
- Initialize architecture  $f_0$  from  $\mathcal{F}$
- For *t* steps:
  - Sample minibatch from S
  - Gradient step on minibatch
- Output  $f_t$

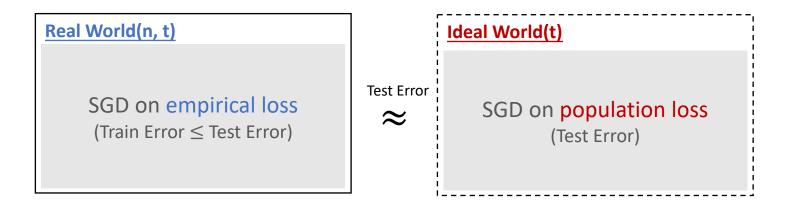
### Ideal World(t)

- Initialize architecture  $f_0$  from  $\mathcal{F}$
- For *t* steps:
  - Sample minibatch from *D*
  - Gradient step on minibatch
- Output  $f_t^{\rm iid}$

Main Idea: compare Real World vs. Ideal World

Fix distribution D, architecture  $\mathcal{F}$ , num samples n.

Then, for all steps  $t \in \mathbb{N}$  define:

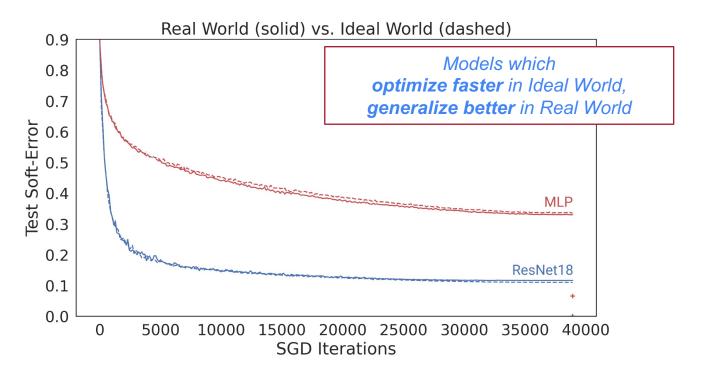


# Experiment



**Real World:** 50K samples, 100 epochs. **Ideal World:** 5M samples, 1 epoch.

# Experiment



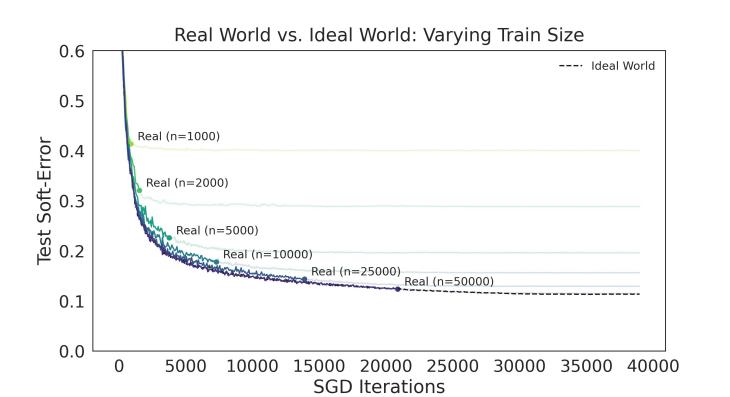
**Real World:** 50K samples, 100 epochs. **Ideal World:** 5M samples, 1 epoch.

T(n): "Stopping time". Real World time to converge on **n** samples (< 1% train error)

## Deep Bootstrap:

 $\forall t \leq T(n)$ : RealWorld $(n, t) \approx_{\epsilon} IdealWorld(t)$ 

"SGD on deep nets behaves similarly whether trained on **re-used samples** or **fresh samples** ...up until the Real World has converged"



## Deep Bootstrap:

FinalError(n)  $\approx_{\epsilon}$  IdealWorld(T(n))

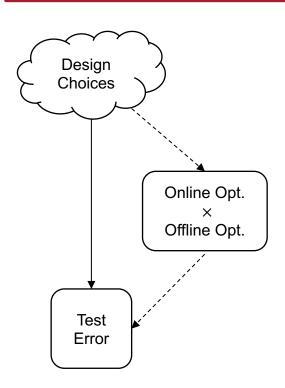
T(n): Time to converge on **n** samples

LHS: Generalization

RHS: Optimization (Online optimization & Empirical Optimization)

## Deep Bootstrap:

FinalError(
$$n$$
)  $\approx_{\epsilon}$  IdealWorld( $T(n)$ )

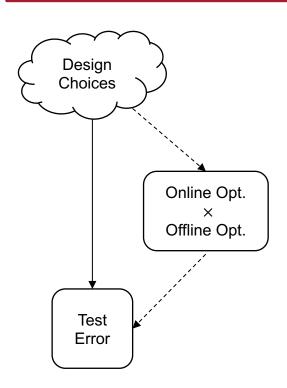


#### **Empirically verified for varying:**

- Architectures
- Model size
- Data size
- Optimizers (SGD/Adam/etc)
- Pretraining
- Data-augmentation
- Learning rate
- .

## Deep Bootstrap:

FinalError(n)  $\approx_{\epsilon}$  IdealWorld(T(n))



Good design choices:

- 1. **Optimize quickly** in online setting (large models, skip-connections, pretraining,...)
- 2. **Don't optimize too** quickly on finite samples (regularization, data-aug,...)

## Alternate Perspectives

Generalization Perspective:

"ConvNets generalize better than MLPs"

"ConvNets optimize faster than MLPs"

"Pretraining helps generalization"

"Pretraining helps optimization"

(a la *preconditioning*)

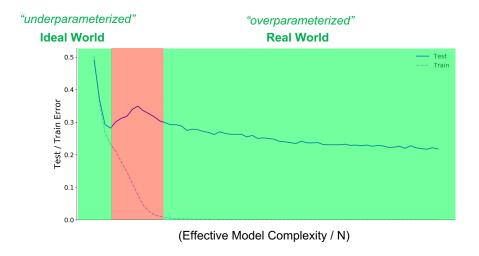
# Significance

Assuming bootstrap claim: Reduces generalization to optimization.

Hope: Refocus attention on online optimization aspects of deep learning

Connects overparametrized and underparameterized regimes:

Models which fit their train sets "behave like" models trained on infinite data



# A Practical Mystery

Two regimes in practice:

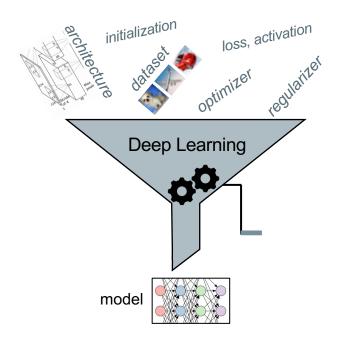
- 1. Effectively infinite data (e.g. train on internet, 1B+ samples) want architectures which optimize quickly
- 2. Small finite data (e.g. 50K samples)

  want architectures which generalize well

Mystery: Why do we use the same architectures in both regimes?

<u>Deep Bootstrap:</u> Not a coincidence...

# Significance



Many arbitrary choices in deep learning.

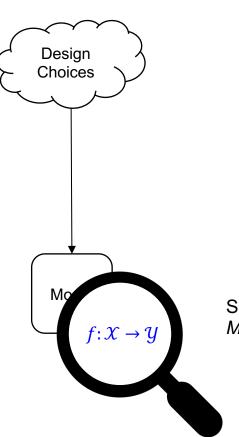
Want theory of generalization that is *not sensitive* to irrelevant choices.

## Deep Bootstrap:

"Any choice that works for online optimization will work for offline generalization."

# PART III DISTRIBUTIONAL GENERALIZATION: A NEW KIND OF GENERALIZATION

(warning: technical & imprecise)



Suppose test error of f = 40%Many such f! Which one did we get?

## **Experiment**

Type:









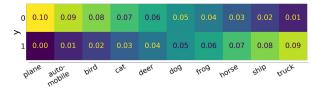
Distribution on (x, y):  $x \sim \{$  random image, random type  $\}$  $y|x \sim \text{Bernoulli}(\text{type}(x) / 10)$ 

Sample from this distribution. Train a neural-net to predict  $f: \mathcal{X} \to \mathcal{Y}$ 

Q: What happens at test time?

A: ~Same distribution!

Train Set (x, y)



We use a method for **classification**. We **don't get** a good classifier: high test error!

We get an approximate sampler:

$$f(x) \sim p(y|x)$$

#### Happens for:

- Interpolating neural networks
- Interpolating kernel regressors
- Interpolating decision trees

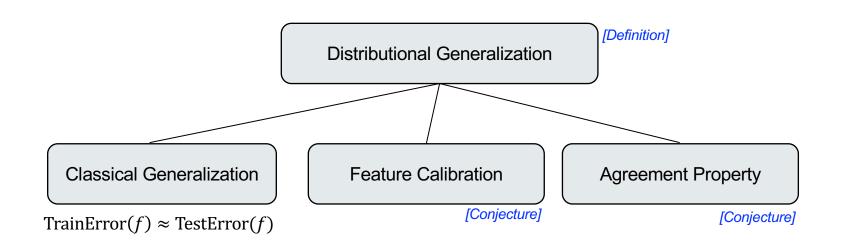
Best thought of as samplers.

Classical generalization is insufficient language

#### Main Idea:

"Test and train outputs of classifiers are close as distributions"

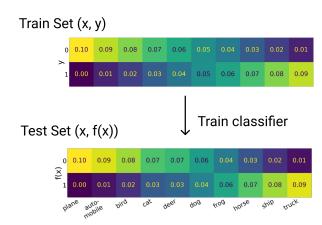
$$(x, f(x))_{x \in \text{TrainSet}} \approx (x, f(x))_{x \in \text{TestSet}}$$



# Roadmap

We want to formalize the closeness:

$$(x, f(x))_{x,y\sim D} \approx (x, y)_{x,y\sim D}$$



# Roadmap

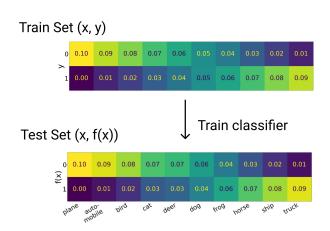
We want to formalize the closeness:

$$(x, f(x)) \approx (x, y)$$

Claim: For some partitions 
$$L: \mathcal{X} \to [M]$$
,  $(L(x), f(x)) \approx_{TV} (L(x), y)$ 

Which partitions?

- Depends on architecture, distribution, num samples...
- Intuitively, "partitions which can be learnt"



x is "coarsened" into a partition L(x)

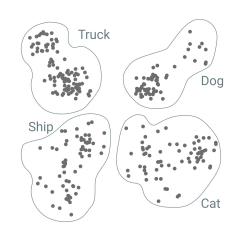
# Distinguishable Feature

Given: Training procedure  $\mathcal{F}$ , distribution  $(x, y) \sim \mathcal{D}$ , num train samples n.

**Defn (informal):** A distinguishable feature is a labeling  $L: \mathcal{X} \to [M]$  of the domain that is **learnable** to high test accuracy, from samples

$$(x_i, L(x_i))_{x_i \sim D}$$

...for training-procedures  $\mathcal{F}$ , with n samples from  $\mathcal{D}$ .



eg: L:  $X \rightarrow \{\text{cat, dog, plane...}\}$  is a distinguishable feature for ResNets with n=50K samples.

# Main Conjecture: Feature Calibration

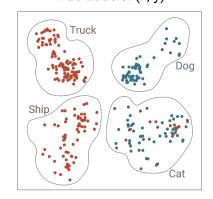
**Conjecture:** For all natural  $\mathcal{D}$ ,  $\mathcal{F}$ , n:

For all distinguishable features L:

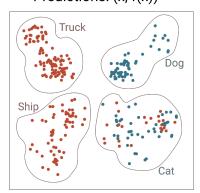
 $(L(x), f(x)) \approx_{TV} (L(x), y)$ 

Test Set

True Labels: (x, y)



#### Predictions: (x, f(x))



# Main Conjecture: Feature Calibration

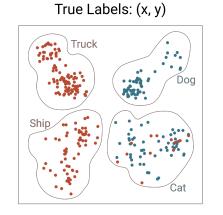
## **Conjecture:** For all natural $\mathcal{D}$ , $\mathcal{F}$ , n:

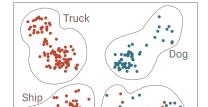
"Marginal distributions of **f**(**x**) and **y** match, when conditioned on any distinguishable-feature **L**"

Eg:

$$p(f(x) \mid x \in CAT) \approx p(y \mid x \in CAT)$$

#### Test Set





Predictions: (x, f(x))

"subgroup calibration property"

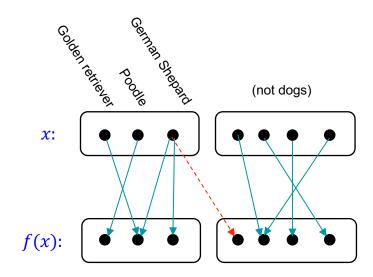
# **Example Application**

ImageNet: Image classification. 1000-classes, 116 dogs.

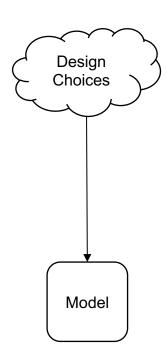
ImageNet is "hard": AlexNet (*f*) gets 56% test accuracy.

Does it at least classify dogs as *some type* of dog?

- Yes! (98% acc). Not 56% accuracy on all groups.
- Predicted by our conjecture
- Even "bad" classifiers (w.r.t. test error), can have "good" hidden structure



# **CONCLUSIONS**



Several ways to understand map between what we *do* & what we *get*:

### Deep Double Descent:

- Definition of "over/under-parameterized regimes"
- Map poorly behaved in "critical regime"

#### Deep Bootstrap:

- Factorize map via (online × offline) optimization
- Connection between over/underparam regimes

- Structural properties of model, beyond test error
- Separation between over/underparam regimes



Several ways to understand map between what we *do* & what we *get*:

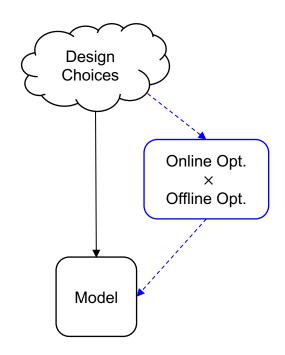
#### **Deep Double Descent:**

- Definition of "over/under-parameterized regimes"
- Map poorly behaved in "critical regime"

### Deep Bootstrap:

- Factorize map via (online × offline) optimization
- Connection between over/underparam regimes

- Structural properties of model, beyond test error
- Separation between over/underparam regimes



Several ways to understand map between what we *do* & what we *get*:

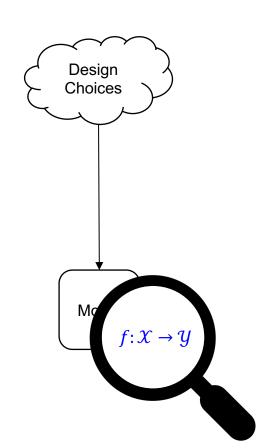
### Deep Double Descent:

- Definition of "over/under-parameterized regimes"
- Map poorly behaved in "critical regime"

#### **Deep Bootstrap:**

- Factorize map via (online × offline) optimization
- Connection between over/underparam regimes

- Structural properties of model, beyond test error
- Separation between over/underparam regimes



Several ways to understand map between what we *do* & what we *get*:

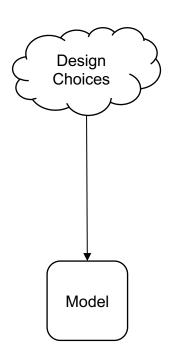
### Deep Double Descent:

- Definition of "over/under-parameterized regimes"
- Map poorly behaved in "critical regime"

### Deep Bootstrap:

- Factorize map via (online × offline) optimization
- Connection between over/underparam regimes

- Structural properties of model, beyond test error
- Separation between over/underparam regimes



## Methodology:

Experiments → New behaviors → Conjectures

**Hope:** Results weave into general theory of learning

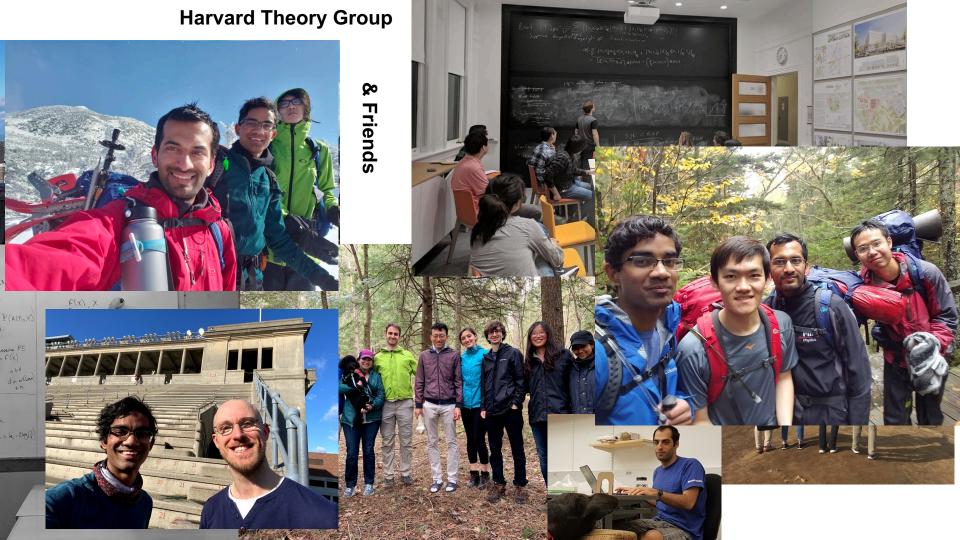
What can we learn (deeply, or otherwise)?

# **ACKNOWLEDGEMENTS**



Advisors: Boaz & Madhu







## All my teachers:

Salil Vadhan, Jelani Nelson, Scott Kominers,... Luca Trevisan, Sangam Garg, Anant Sahai,... Peter Saxby, John Frank,...

## **Senior Collaborators:**

Ilya Suskever, Chris Olah, Sham Kakade, Tengyu Ma,

Jacob Steinhardt, Behnam Neyshabur, Hanie Sedghi

## My Family



# **END**