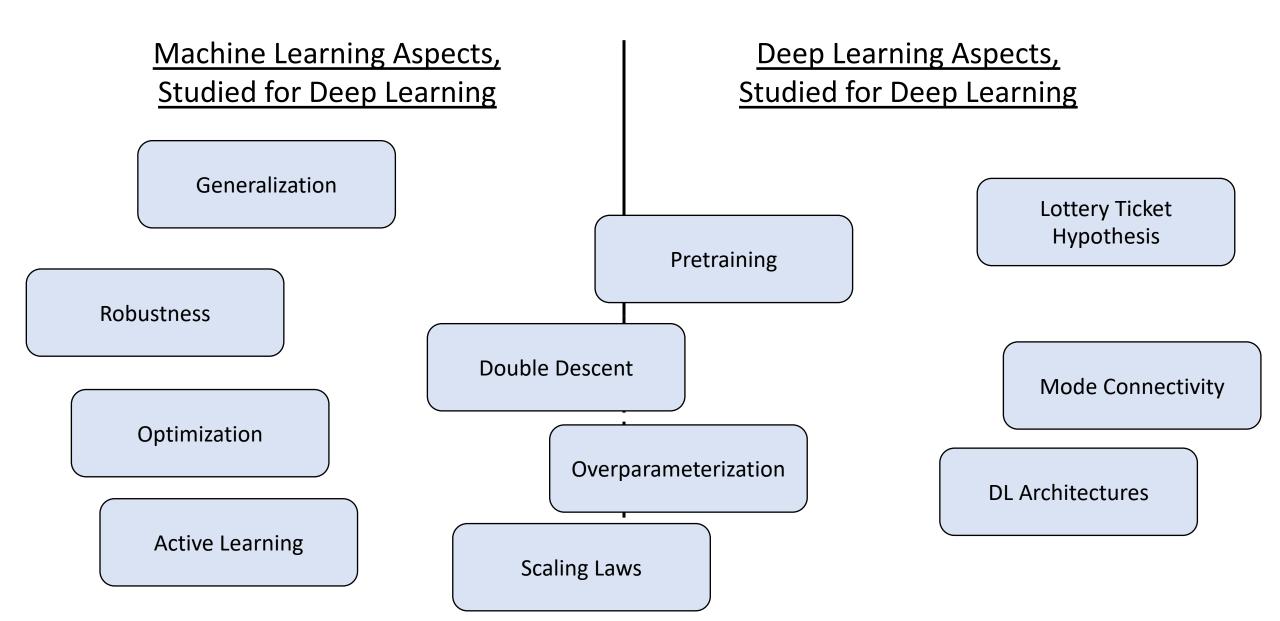
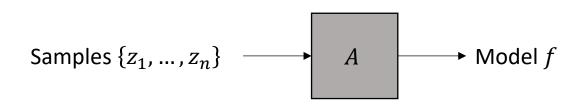
Empirical Studies in Deep Learning

Types of Empirical Studies in Deep Learning



Scaling Laws in Machine Learning

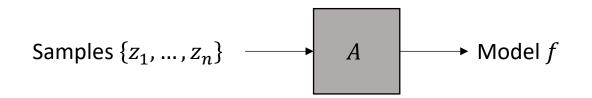
Machine Learning



How *good* is our learning algorithm *A*? Many choices...

- Input distribution: **Fixed dist** / average over a family / worst-case (empirical) (theory)
- Model evaluation: Loss function? On dist / off-dist? Downstream eval?
- Sample-size: n. **Fixed** / asymptotic?

Deep Learning



Most practical papers: fixed distribution, fixed sample size n_0

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

Table 1: Comparison of results on ILSVRC-2010 test set. In *italics* are best results achieved by others.

model	top-1 err.	top-5 err.
VGG-16 [41]	28.07	9.33
GoogLeNet [44]	2	9.15
PReLU-net [13]	24.27	7.38
plain-34	28.54	10.02
ResNet-34 A	25.03	7.76
ResNet-34 B	24.52	7.46
ResNet-34 C	24.19	7.40
ResNet-50	22.85	6.71
ResNet-101	21.75	6.05
ResNet-152	21.43	5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.

[Krizhevsky et al. 2012]

[He et al. 2016]

Deep Learning

Consider: performance as a function of n.

- 1. Individual algos: Care about more than just fixed n_0 (Want continued improvement with n...)
- 2. Comparing algos / Model selection:
 - In future, with n=1e9, which learning algo should we use?
 - Want asymptotic behavior at large n

Hope in DL:

1. (Large enough) Deep nets continue to improve with *n*

Algos which work best on ImageNet → best on larger problems

(warning: until recently...)

Learning Curves

Fix distribution D, learning algo A. Define

$$L(n) :=$$
 "expected test loss of A on \mathbf{n} samples from D"
= $E_{S \sim D^n, A} [Loss_D A(S)]$

L is known as the "learning curve" of A.

Long history in practice & theory...

It is an important subject of research of neural networks and machine learning to study general characteristics of learning curves, which represent how fast the behavior of a learning machine is improved by learning from examples. It is also important to evaluate the performance of

[Amari, Murata 1993]

See also survey:

[Viering, Loog 2021]

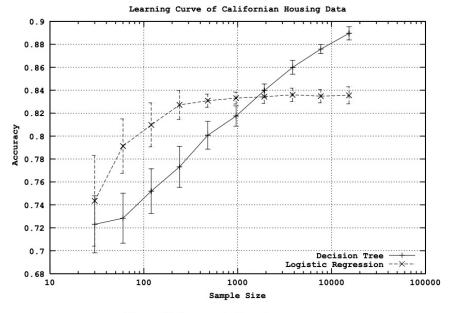
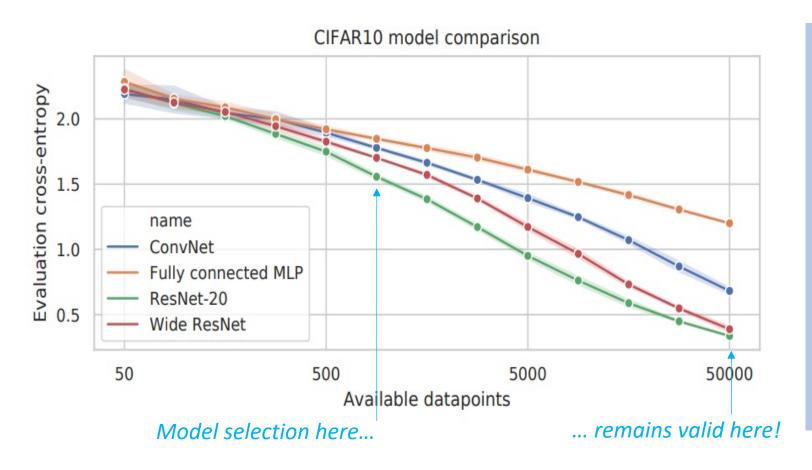


Figure 2: Log-scale learning curves

[Perlich Provost Simonoff 2001]

Typical Learning Curves in DL

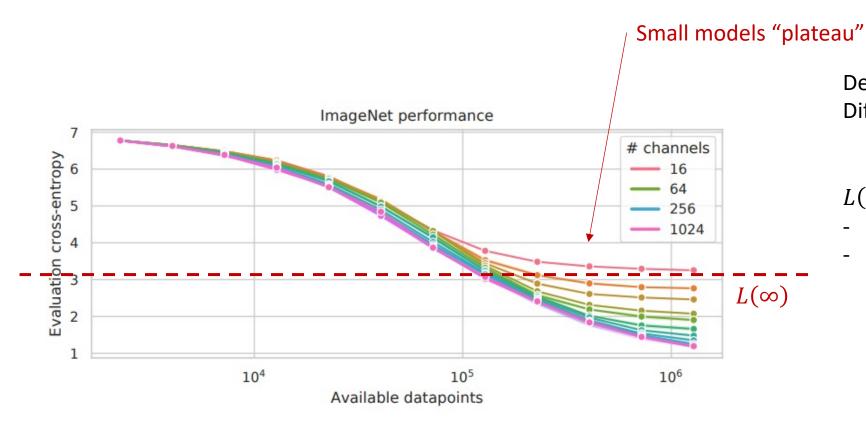


Hope in DL:

1. (Large enough) Deep nets continue to improve with *n*

Algos which work best on ImageNet → best on larger problems

Why "Large Enough" NNs?



[Bornschein Francesco Osindero 2020]

Define "reducible loss" L^* :
Difference from "best possible" loss $L(n) = L^*(n) + L(\infty)$

 $L(\infty) > 0$ because:

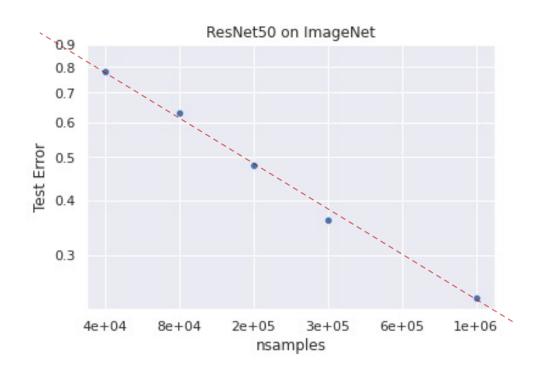
- Models too small
- Distribution inherently "noisy"

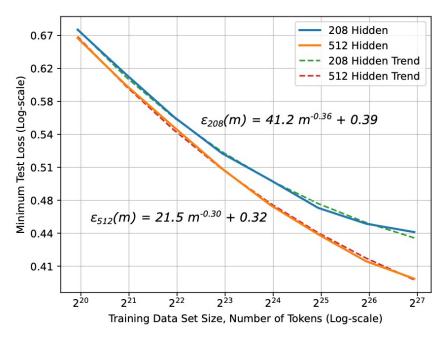
Power Law Scaling

<u>Claim</u>: For large-enough NNs, learning curve of reducible loss is a power law:

 $L^*(n) \sim An^{-\beta}$

[Hestness et al. 2017]
[Rosenfeld, Rosenfeld, Belinkov, Shavit 2019]
[Kaplan, McCandlish et al. 2020]





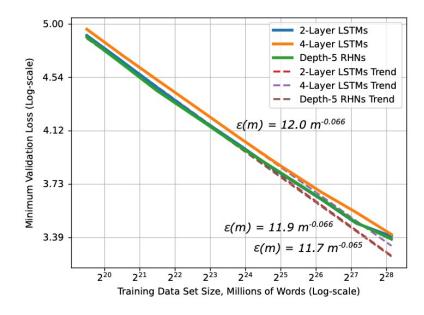
Machine Translation: Fig 1, Hestness et al.

Scale Invariance

Power laws: $L(n) = An^{-\beta}$

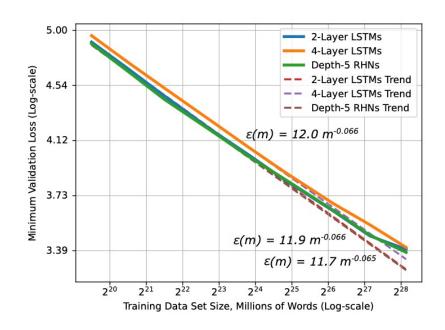
Defining property: $L(kn) = C_k L(n)$

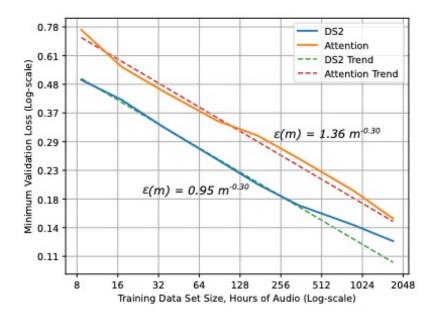
Eg: "Having **10x** times more data will reduce the loss by **50%**" (for all n)



Power-law scaling verified in many settings:

- Domains: LM, MT, Text/Image classification, gen. modeling
- Architectures: ConvNets, Transformers, LSTMs, Kernels,...

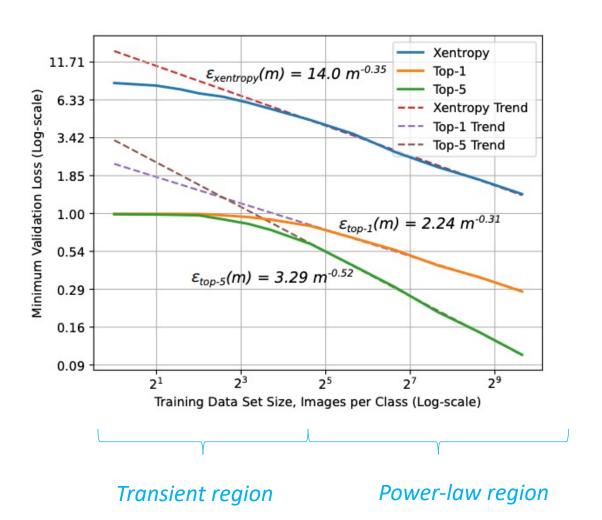




Language Modeling

Speech Recognition

Caveats: "Warm-up"



Potential problem: We could be in the "transient" region without knowing it...

Consequences

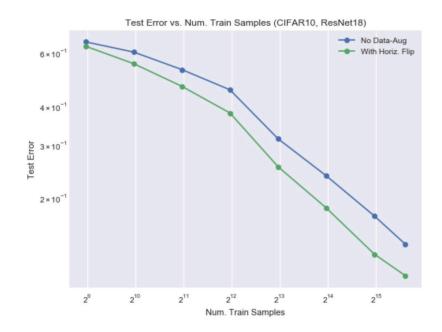
1. Evaluate design choices in ML via effect on **scaling**: constant (A) vs exponent (β)

Ex: What is the effect of data-augmentation? Likely only affects the constant (data: $n \mapsto Kn$). [Hoiem et al 2021]

Ex: What is the effect of architecture? (cf algo design...)

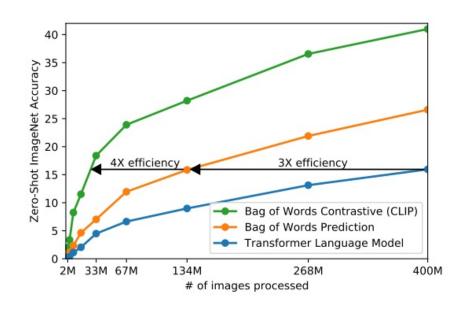
2. small scale experiments → large scale behavior(good for science & practice... but caveats apply)

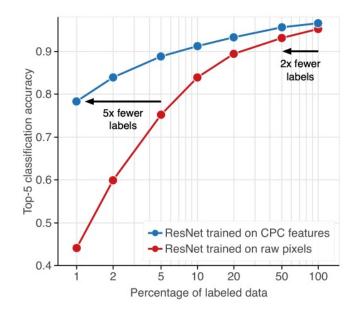
$$L^*(n) \sim An^{-\beta}$$



More common for papers to report data-scaling (changes to the constants, not asymptotics...)

$$L(n) \sim An^{-\beta}$$





[Henaff et al. 2020]

Scaling: In Theory

Many upper-bounds in learning theory obey power-laws Ex: ERM / Uniform convergence

$$f_n \coloneqq \operatorname{argmin}_{f \in \mathcal{H}} \widehat{L_n}(f)$$

 $f^* \coloneqq \operatorname{argmin}_{f \in \mathcal{H}} L(f)$

$$L(f_n) \le L(f^*) + O\left(\sqrt{\frac{VC(\mathcal{H})}{n}}\right)$$

 $1/\sqrt{n}$ dependency: *statistical* reasons

Different mechanisms!

Scaling: In Theory

Algorithm/Setting	Rate	Notes
ERM	$O_{VC}(\frac{1}{\sqrt{n}})$	[SSS-SBD]
Parametric MLE	$O\left(\frac{d}{n}\right)$	[Liang]
SGD (online, convex)	$O\left(\frac{1}{t}\right)$	[Hazan] [Bottou]
GD (strongly convex)	$\exp(-\Omega(t))$	
1-NN classification	$O(n^{-\frac{1}{d}})$	[Chaudhuri- Dasgupta]
Kernel Smoothing (s-smooth)	$O(n^{-\frac{2s}{2s+d}})$	[Krishnamurthy]

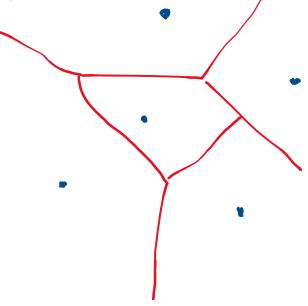
Scaling of 1-NN

Heuristic derivation based on [Sharma, Kaplan 2020]

Regression: Want to estimate $f:[0,1]^d \to \mathbb{R}$, 1-Lipshitz.

n points, partition space into cells of sidelen s

$$Vol(cell) \approx \frac{1}{n} \Longrightarrow s = n^{-1/d}$$



Let c(x): piecewise-const NN estimator

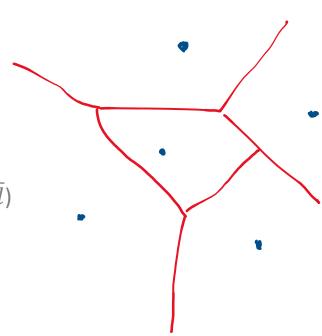
Loss (MSE):

$$L = \int_0^1 |f(x) - c(x)|^2 dV$$

$$\leq \int_0^1 \left| s \sqrt{d} \right|^2 dV \qquad \text{(Diameter of each cell } \sim s \sqrt{d}\text{)}$$

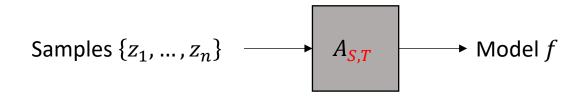
$$\sim n^{-\frac{2}{d}} \qquad (s \sim n^{-1/d})$$

$$\sim \eta^{-\frac{2}{d}}$$



Beyond Data-Scaling

Beyond Data-Scaling



Specialize to neural-networks:

 $L(N, S, T) := \text{Test loss with } \mathbf{N} \text{ samples, model size } \mathbf{S}, \text{ train time } \mathbf{T}$

N: info-theoretic constraint

S, T: computational constraint

Well-behaved Regimes: PART I

$$L(\infty, \infty, \infty) \to 0$$
 *(or Bayes risk)

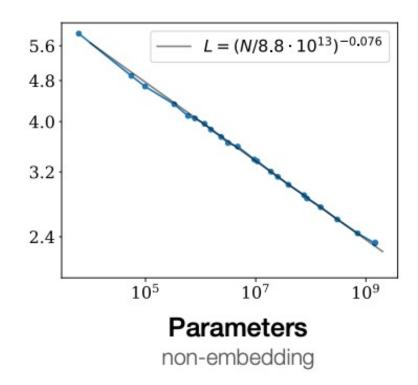
 $L(N, \infty, \infty)$: power-law data-scaling

 $L(\infty, S, \infty)$: power-law model-scaling

 $L(\infty, \infty, T)$: power-law online learning

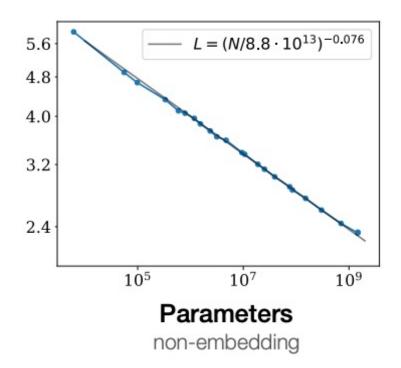
Bottlenecked by a single quantity.

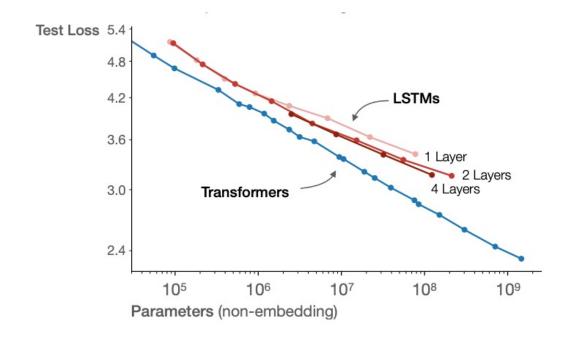
"Resolution limited" [Bahri Dyer Kaplan Lee Sharma 2021]



Model Scaling: $L(N = \infty, S, T = \infty)$

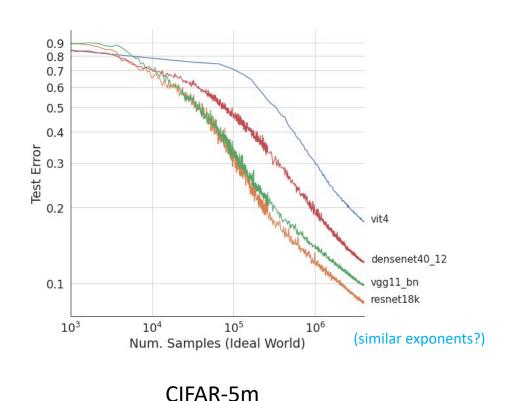
What is model "size"? Need a parameterization (width-scaling, etc) Generally, anything s.t. $L(\infty, \infty, \infty) \to 0$ will work



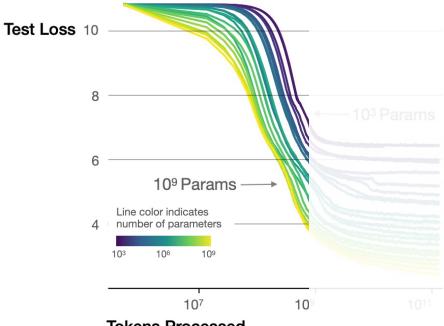


Online Learning Scaling: $L(N = \infty, S = \infty, T)$

"Effectively infinite data" = online learning



Larger models require **fewer samples** to reach the same performance



Tokens Processed

Language Modeling [Kaplan et al]

Compute-Scaling

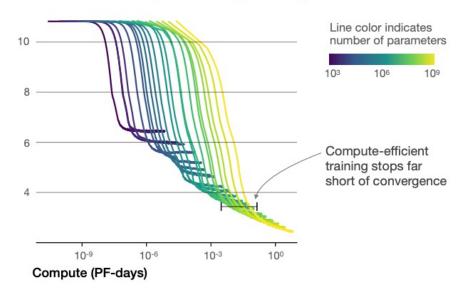
Practical measure: compute C, the cost of training (FLOPS)

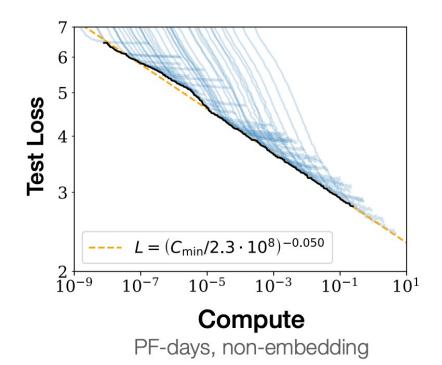
Assume $C \approx S^*T$ (depends on the parameterization of S)

Want: Optimal S, T within compute budget C (and infty data)

$$L_c(C) \coloneqq \min_{ST \le C} L(\infty, S, T)$$

The optimal model size grows smoothly with the loss target and compute budget





$$L_c(C) \coloneqq \min_{ST \le C} L(\infty, S, T) \approx L(\infty, C^{\gamma}, C^{\delta})$$

Optimal S*, T* also follow power laws

Well-behaved Regimes: PART II

"Variance limited" regimes of L(N, S, T) [Bahri Dyer Kaplan Lee Sharma 2021]

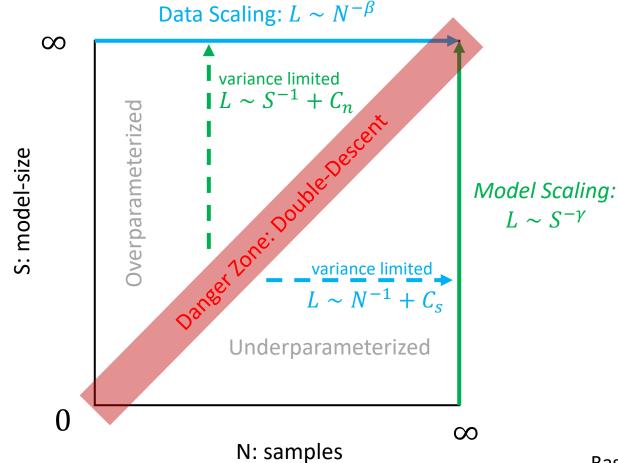
- 1. $L(N, S_0, \infty)$: power-law data-scaling for *reducible* loss $(N \gg S_0)$ irreducible loss = $L(\infty, S_0, \infty)$
- 2. $L(N_0, S, \infty)$: power-law model-scaling for *reducible* loss $(N_0 \ll S)$ irreducible loss = $L(N_0, \infty, \infty)$

Power laws for *very different* reasons vs. earlier:

- (1) is underparameterized, scales as 1/N for "classical" reasons (variance)
- (2) also scales as 1/S (for similar reasons in certain cases)

Well-behaved Regimes: PART II

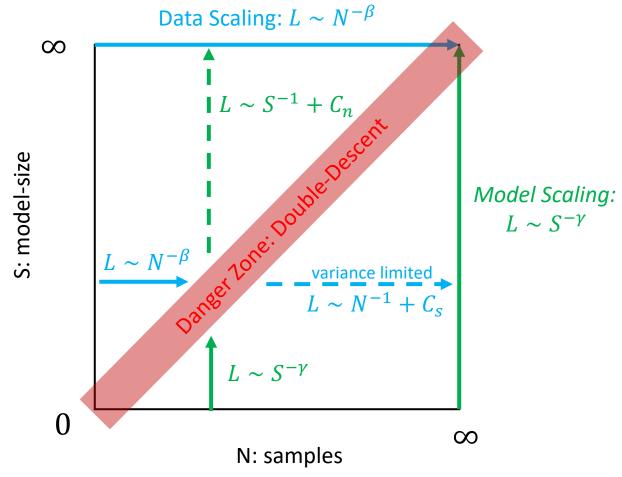
 $L(N, S, T = \infty)$:

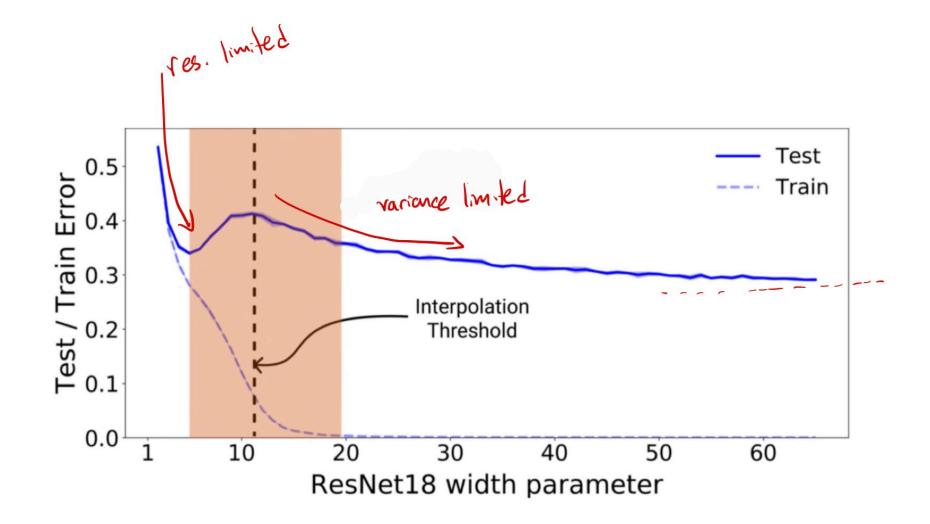


Based on
[Bahri Dyer Kaplan Lee Sharma 2021]

Well-behaved Regimes: PART II

 $L(N, S, T = \infty)$:





For fixed N:

- First descent is "resolution limited" scaling
- Second descent is "variance limited" scaling

What Affects Scaling Exponent?

* Jury still out...

Architecture

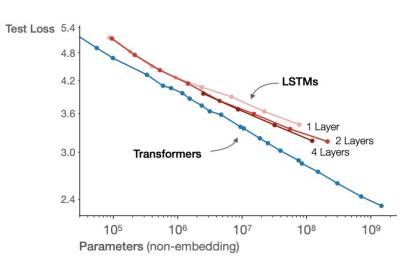
Arch matters:
 Exist architectures with bad scaling exponents (MLPs)

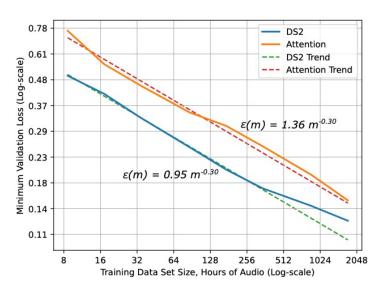
- Arch doesn't matter:

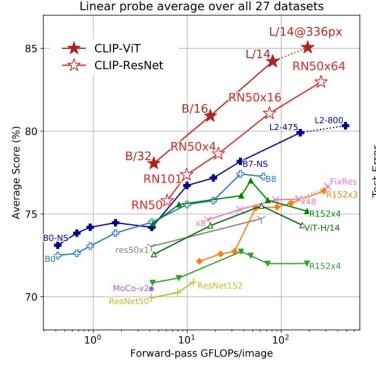
All "good" architectures have similar data/model/compute-scaling exponents

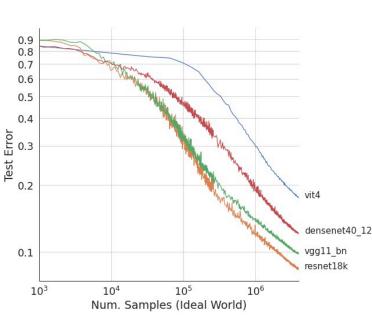
Even very different archs!

*don't know how to state this formally. could be wrong...





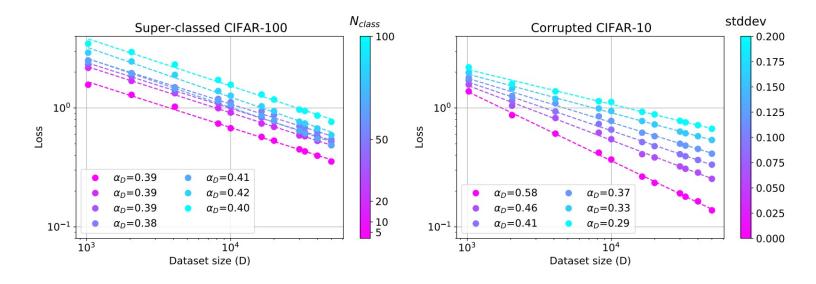




Data Distribution

Task matters, but not in obvious ways. Eg: "Easier tasks have larger exponents?"

Two different ways to make task easier:



Superclassing: Same exponent

Adding feature noise: Changes exponent

Caveats

Loss vs Capabilities

Is all of DL predictable?

No. We're still surprised what happens "at scale"

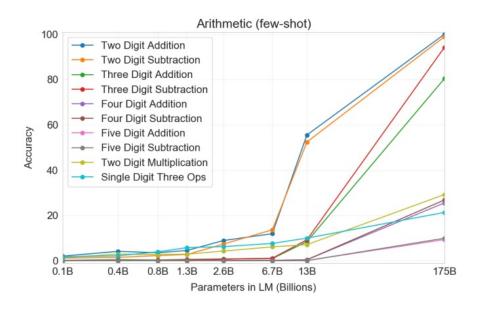
Eg: ViT, DALL-E, GPT-3 few shot

Why?

- "Transient" effects
- 1. Don't know what to measure some capabilities only appear "at scale"
- 2. Some measurements discontinuous

AI-GENERATED IMAGES

[Ramesh et al 2021]



Thanks!