

The Deep Bootstrap

Rethinking Generalization to Understand Deep Learning

Preetum Nakkiran Harvard Behnam Neyshabur Google

Hanie Sedghi Google Brain

Motivation

Goal: "Understand" why DL methods used in practice work (small test error / test loss).

Hope: Predict how design choices affect test error.

This Work: Framework/roadmap for achieving goal (for supervised classification)

Setting (briefly)

Setup: Supervised classification.

Distribution $(x, y) \sim D$

Want: classifier f(x) with small test error: $\Pr_{x,y\sim D}[f(x)\neq y]$

Do: SGD on NN to minimize *train error*

Our Framework (high-level)

Classical Framework: Finite train set.

"Good models are those with small generalization gap"

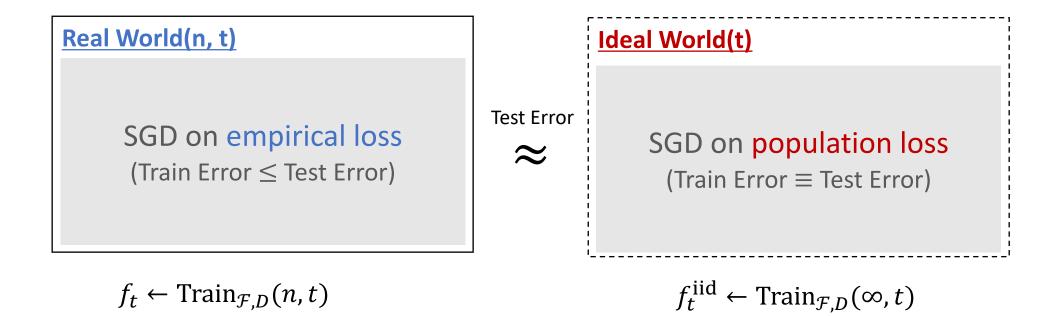
Our Framework: Models trained on finite train set \approx infinite train set

"Good models are those which optimize quickly, on infinite data"

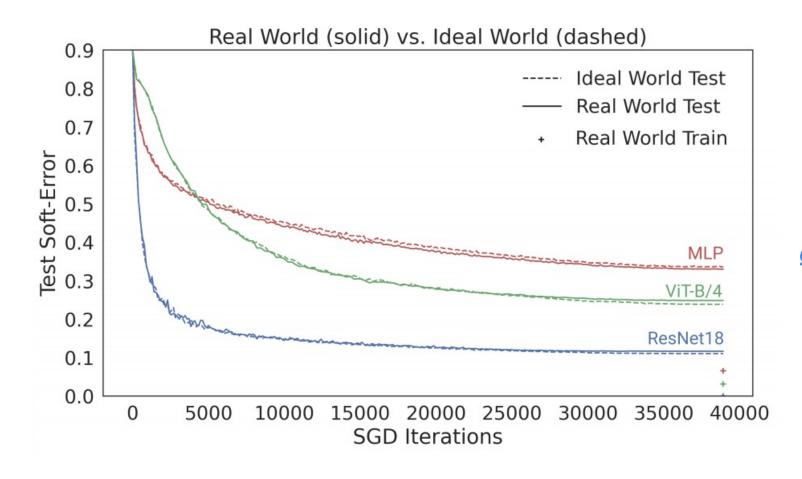
Our Framework

Main Idea: compare Real World vs. Ideal World

Fix distribution D, architecture \mathcal{F} , num samples n. Then, for all steps $t \in \mathbb{N}$ define:



Example



Models which

optimize faster in Ideal World,

generalize better in Real World

Real World: 50K samples, 100 epochs. **Ideal World:** 5M samples, 1 epoch.

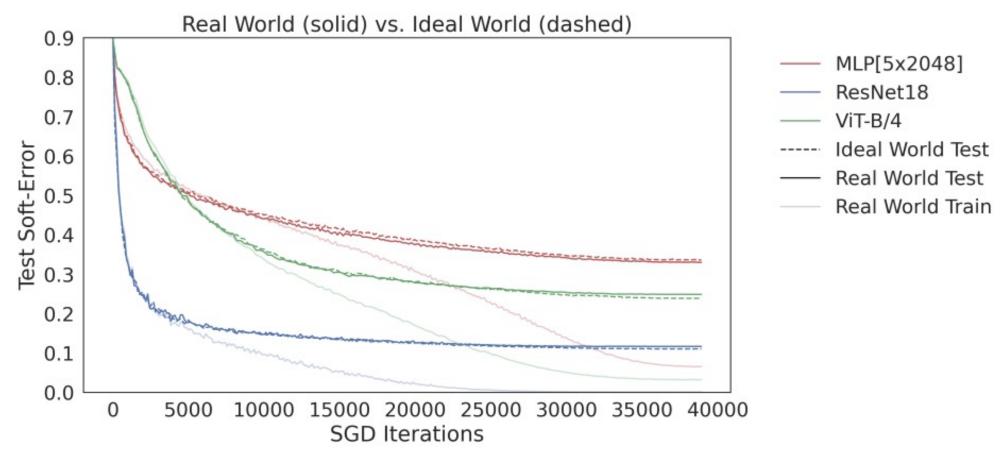


Figure 8: The corresponding train soft-errors for Figure 1.

(More) Precise Claim

SGD on deep nets produces similar models whether trained on re-used samples (Real) or fresh samples (Ideal)

...as measured by Test SoftError

...for as long as the Real World optimizer is still moving (e.g. TrainError $\geq 1\%$)

(More) Precise Claim

New decomposition: TestError
$$(f_t) = \underbrace{\text{TestError}(f_t^{\text{iid}})}_{\text{A: Online Learning}} + \underbrace{[\text{TestError}(f_t) - \text{TestError}(f_t^{\text{iid}})]}_{\text{B: Bootstrap error}}$$

Define "bootstrap error" ϵ as (Real – Ideal): $\epsilon(n, \mathcal{D}, \mathcal{F}, t)$

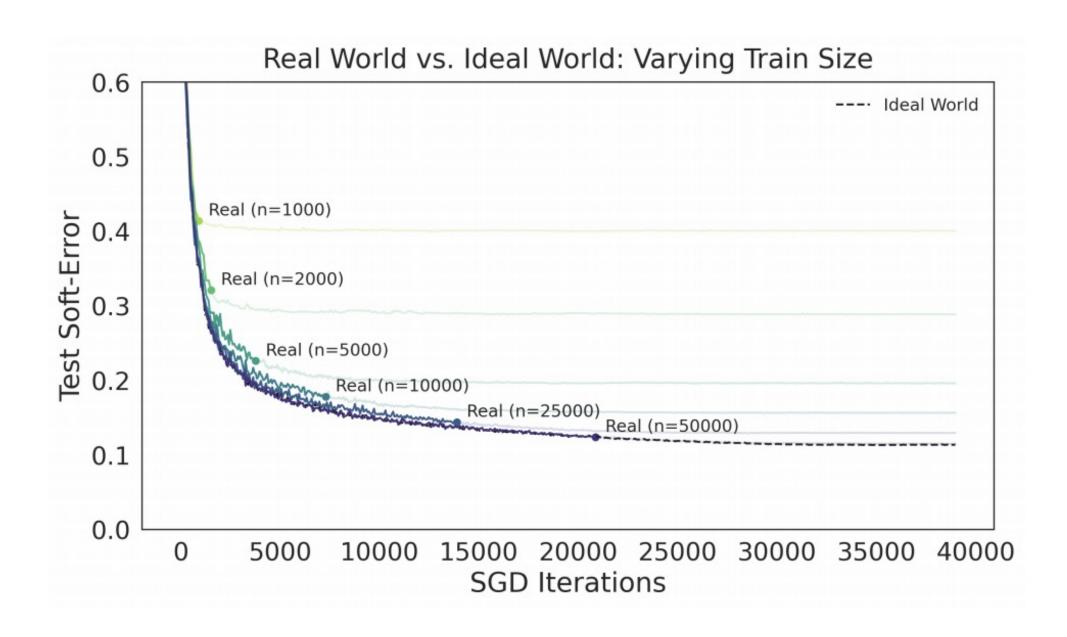
Main Claim: Bootstrap error $\epsilon(n, \mathcal{D}, \mathcal{F}, t)$ is small for realistic $(n, \mathcal{D}, \mathcal{F})$, and all $t \leq T_N$.

Where "stopping time" T_N := time when Real World reaches TrainError $\leq 1\%$.

RealWorld($N, T = \infty$) \approx RealWorld(N, T_N) \approx_{ϵ} RealWorld(∞, T_N)

Practice: Real World (trained as long as possible) Real World (stopped at T_N : when Train Error $\approx 1\%$)

Ideal World (stopped at T_N)



Learning curves:

L(n): Loss on **n** samples (Real-world, trained to convergence)

T(n): Time to converge on n samples (Real world SGD steps)

 $\tilde{L}(t)$: Loss after **t** online SGD steps (Ideal World)

Then:

$$L(n) \approx \tilde{L}(T(n))$$

Significance

$$\operatorname{TestError}(f_t) = \underbrace{\operatorname{TestError}(f_t^{\operatorname{iid}})}_{\text{A: Online Learning}} + \underbrace{\left[\operatorname{TestError}(f_t) - \operatorname{TestError}(f_t^{\operatorname{iid}})\right]}_{\text{B: Bootstrap error}}$$

To understand generalization, sufficient to understand:

- 1. Online optimization: how fast Ideal World learns. [long history, but not in DL]
- 2. Empirical optimization: how fast Real World convergences (T_N) [recent progress: Arora, Allen-Zhu,...]
- 3. Bootstrap Error: |Real Ideal | [long history in stats, but not in DL]

Assume/prove/believe bootstrap error small ⇒ generalization reduced to **optimization!**

(Towards) Practical Guidance

<u>Deep Bootstrap</u>: "Real World ≈ *Ideal World* as long as the Real World hasn't converged"

Thus, good training procedures:

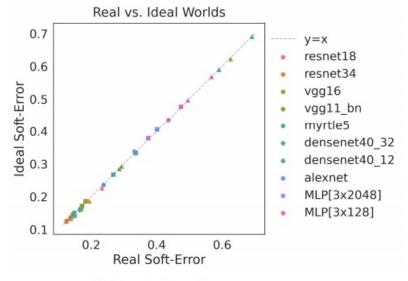
- 1. **Optimize quickly** on infinite samples (high-capacity models, skip-connections, BN, ...)
- 2. **Don't optimize too** quickly on finite samples (regularization, data-aug,...)

Validation: Summary of Experiments

• CIFAR-5m: 5-million synthetic samples from a generative model trained on CIFAR-10

Samples from CIFAR-5m

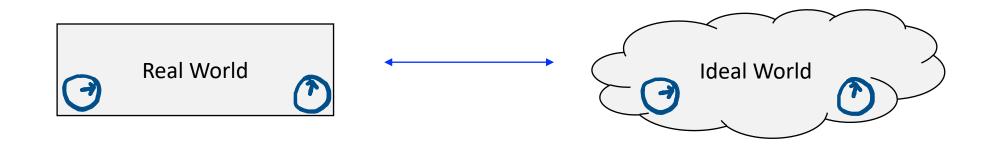
- ImageNet-DogBird: 155K images by collapsing ImageNet catagories. Binary task.
- Varying settings: {archs, opt, LR,...} convnets, ResNets, MLPs, Image-GPT, Vision-Transformer



(a) Standard architectures.

Figure 2: **Real vs Ideal World: CIFAR-5m.** SGD w $0.1 (\bullet), 0.01 (\blacksquare), 0.001 (\blacktriangle)$. (b): Random architecture

Implications: Deep Learning through the Bootstrap Lens



Effect of Pretraining

Pretrained models generalize better (Real) "because" they optimize faster (Ideal)

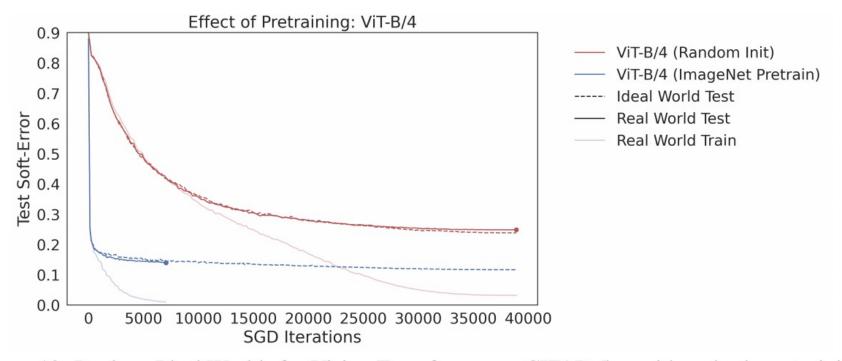


Figure 13: Real vs. Ideal Worlds for Vision Transformer on CIFAR-5m, with and w/o pretraining.

Effect of Data Aug

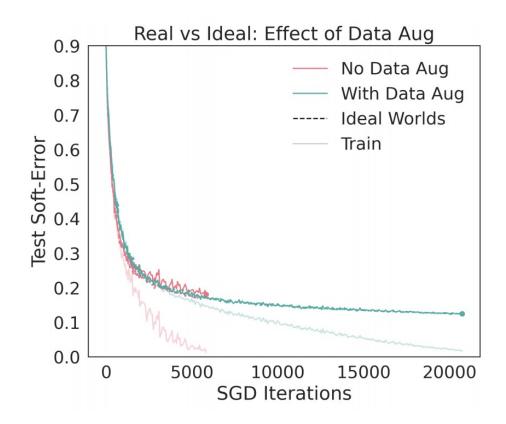
Data-aug in the Ideal World = Augment each sample once

3 potential effects:

- 1. Ideal World Optimization Speed
- 2. Real World Convergence Speed
- 3. Bootstrap Gap

Good data-augs:

- Don't hurt learning in Ideal World
- Decelerate optimization in Real World (train for longer)



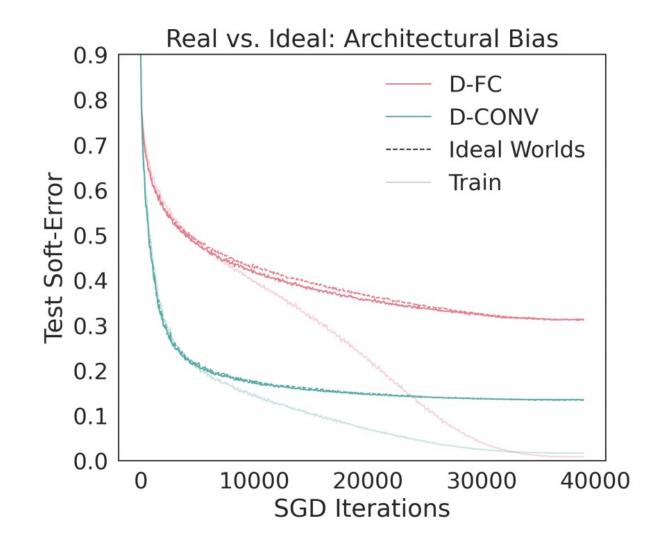
Implicit Bias → Explicit Optimization

Two archs from [Neyshabur 2020]: D-CONV (convnet) ⊂ D-FC (mlp)

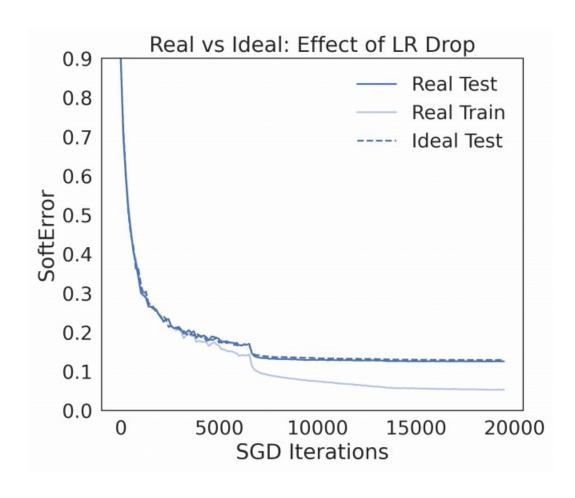
Both train to 0 Train Error, but convnet generalizes better.

Traditionally: due to "implicit bias" of SGD on the convnet.

Our view: due to better optimization in the Ideal World



Effect of Learning Rate



Concluding Thoughts

- Future models may be either overparameterized or underparameterized (GPT-3, T5, ResNeXt WSL)
 - Largest models trained for less than one epoch
 - Deep Bootstrap: understanding online optimization will be useful in either case
- Many arbitrary choices in deep learning (arch, loss, optimizer, activation..)
 - Which ones work for generalization?
 - Deep Bootstrap: Anything that works well for online optimization

Open Questions:

- Quantitative dependency of bootstrap-error on (n, D, \mathcal{F}, t)
- Theoretical understanding? Toy models?

Extras

Choice of Metric

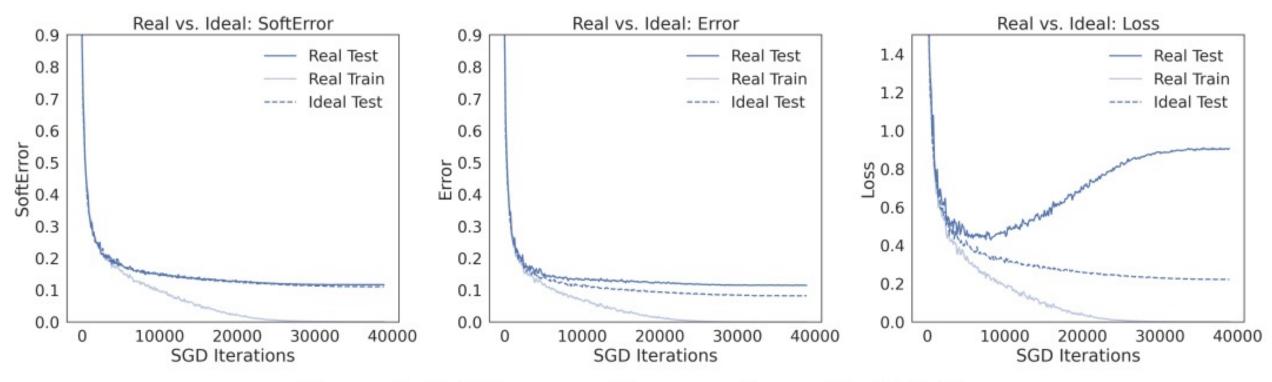


Figure 6: SoftError vs. Error vs. Loss: ResNet-18.

Why Soft-Error?

Want: RealWorld \rightarrow IdealWorld as (model, data) $\rightarrow \infty$.

- This doesn't always happen w.r.t Test Error.

Claim: In an overparameterized limit of (model, data) $\to \infty$, interpolating classifiers converge to *optimal samplers:* $f(x) \sim p(y|x)$

"Distributional Generalization" [Nakkiran, Bansal 2020]

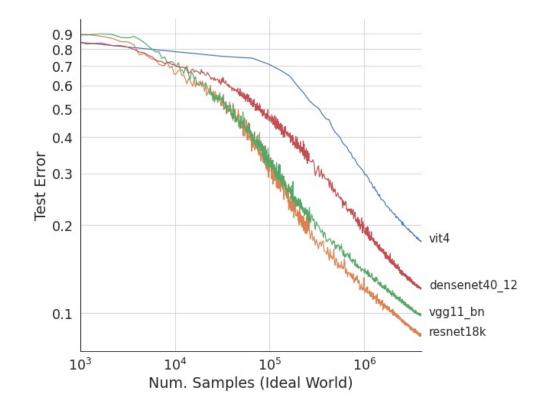
...NOT to Bayes-optimal classifiers: $f^*(x) = \operatorname{argmax}_y p(y|x)$

Scaling Laws in Ideal World

Study L(t): Ideal-world learning curve

Empirically: power law

 $L(t) \sim t^{-\alpha}$



What about Non-Deep Learning?

- Not true for wellspecified linear regression!
- Can be contrived to be true for misspecified regression

$$x \sim \mathcal{N}(0, V)$$
$$y := \sigma(\langle \beta^*, x \rangle)$$

$$f_{\beta}(x) := \langle \beta, x \rangle$$

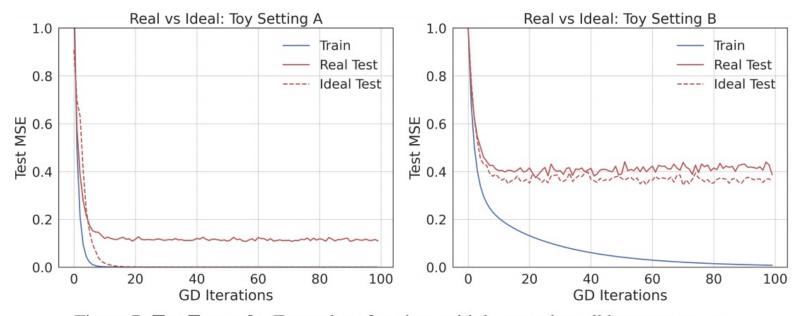
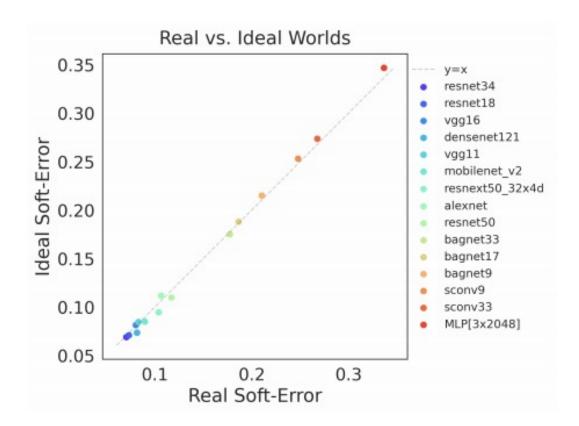
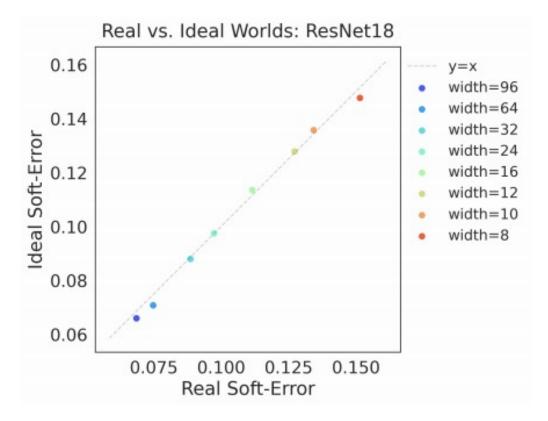


Figure 7: **Toy Example.** Examples of settings with large and small bootstrap error.

- Setting A. Linear activation $\sigma(x) = x$. With n = 20 train samples.
- Setting B. Sign activation $\sigma(x) = \operatorname{sgn}(x)$. With n = 100 train samples.

ImageNet Experiments





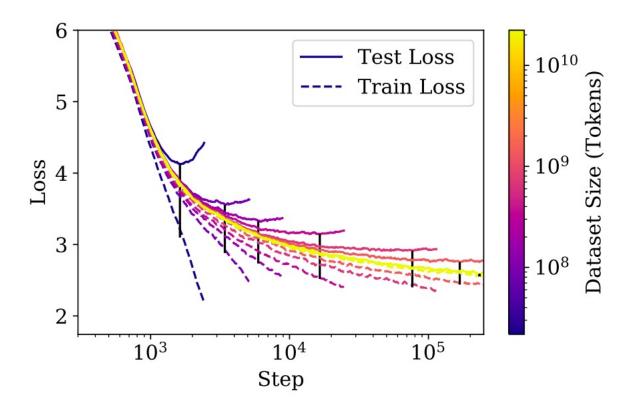
(a) Standard architectures.

(b) ResNet-18s of varying width.

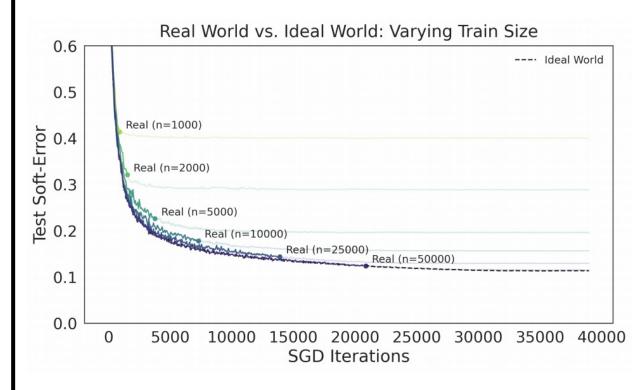
Figure 3: ImageNet-DogBird. Real World models trained on 10K samples.

GPT-3 Learning Curves

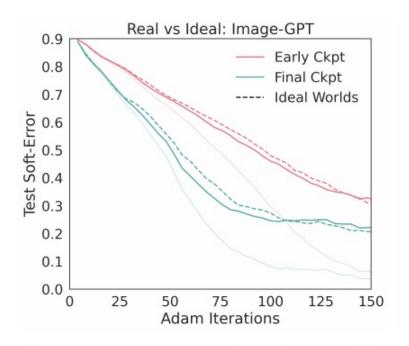
[Kaplan et al 2020]



ResNet18 Curves



Effect of Pretraining



(b) Pretrain: Image-GPT (n = 2K).

When Data-Aug Hurts

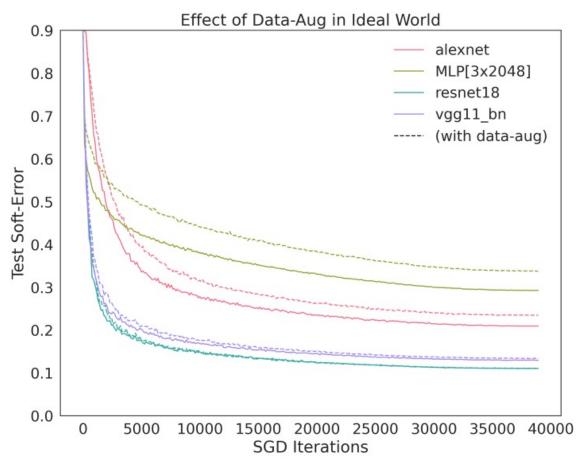


Figure 10: Effect of Data Augmentation in the Ideal World.

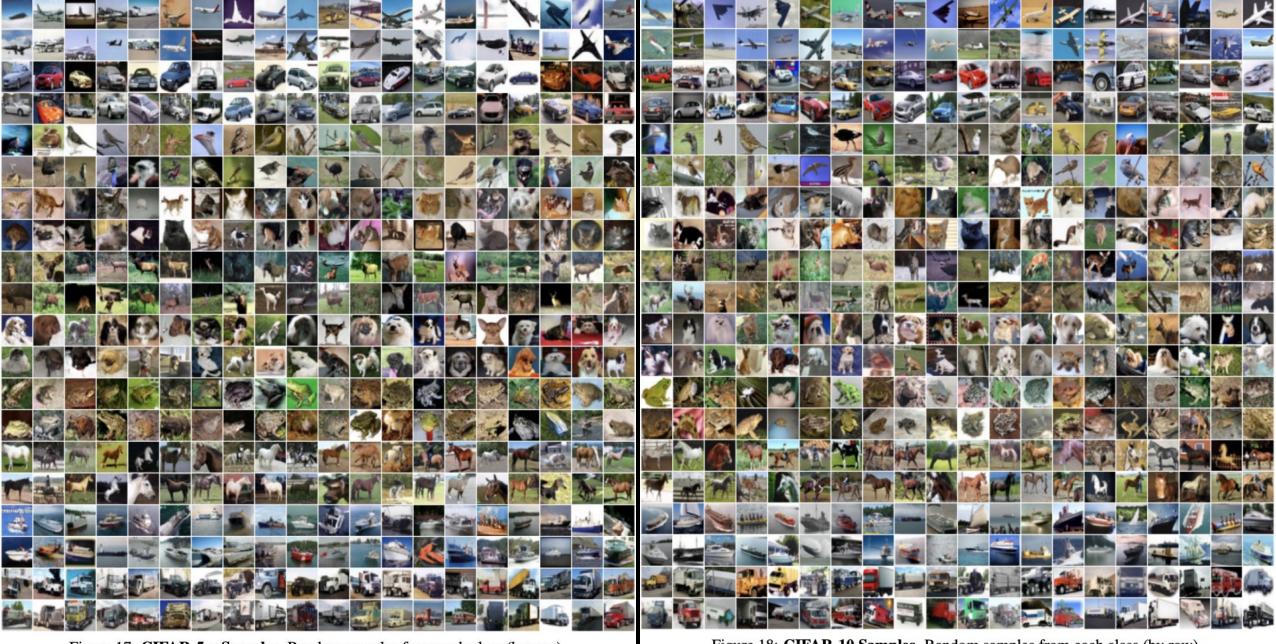


Figure 17: CIFAR-5m Samples. Random samples from each class (by row).

Figure 18: CIFAR-10 Samples. Random samples from each class (by row).

Trained On	Test Error On	
	CIFAR-10	CIFAR-5m
CIFAR-10	0.032	0.091
CIFAR-5m	0.088	0.097

Table 2: WRN28-10 + cutout on CIFAR-10/5m

english_springer

CIFAR-5m Experiments

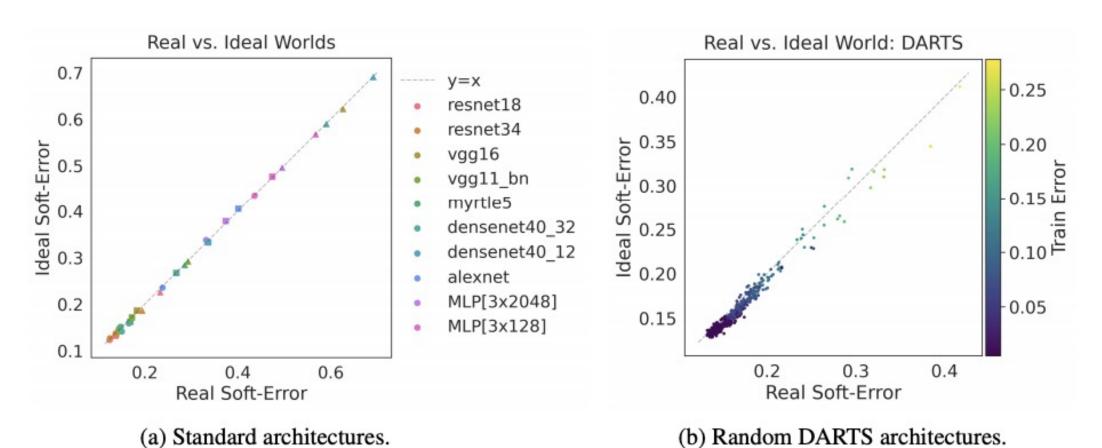
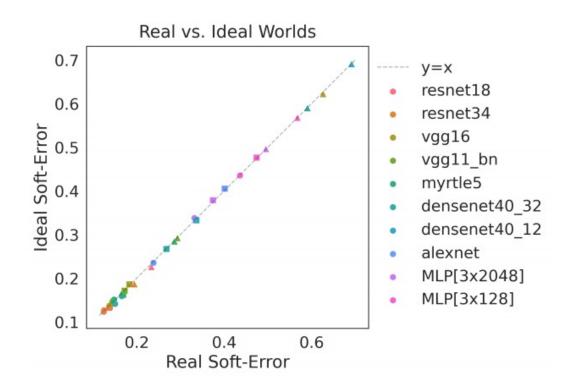
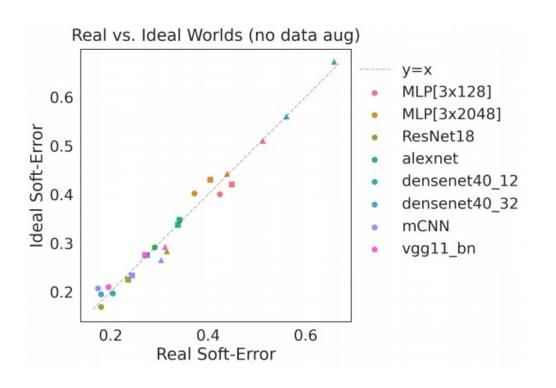


Figure 2: **Real vs Ideal World: CIFAR-5m.** SGD with 50K samples. (a): Varying learning-rates $0.1 \ (\bullet), 0.01 \ (\blacksquare), 0.001 \ (\blacktriangle)$. (b): Random architectures from DARTS space (Liu et al., 2019).

ImageNet Experiments





Validation: Summary of Experiments

- CIFAR-5m: 5-million synthetic samples from a generative model trained on CIFAR-10
 - Realistic: Training WRN on n=50K from CIFAR-5m yields 91.2% test acc on CIFAR-10
- ImageNet-DogBird: 155K images by collapsing ImageNet catagories.
 - Real World: n=10K for 120 epochs
 - Ideal World: n=155K for < 8 epochs (approximation of $n=\infty$)
- Various archs: convnets, ResNets, MLPs, Image-GPT, Vision-Transformer

Classical Framework (ERM)

Classical Framework: Finite data, need to understand generalization gap

$$\underline{\text{TestError}(f_t)} = \underline{\text{TrainError}(f_t)} + \underbrace{[\text{TestError}(f_t) - \text{TrainError}(f_t)]}_{\text{Generalization gap}}$$

"Good models are those with small generalization gap"

Obstacles:

- 1. Hard: Decades of work, little progress.
- 2. Large models can fit train sets \rightarrow trivializes framework