How to Compress Hidden Markov Sources

Preetum Nakkiran

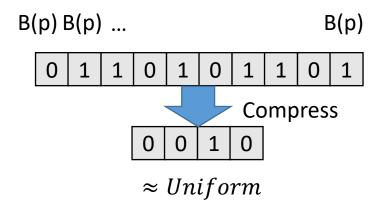
Harvard University

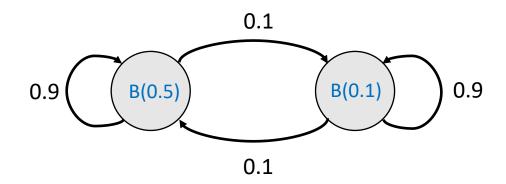
Joint works with:

Venkatesan Guruswami, Madhu Sudan + Jarosław Błasiok, Atri Rudra

Compression

- **Problem:** Given n symbols from a probabilistic source, compress down to < n symbols (ideally to "entropy" of the source) (s.t. decompression succeeds with high probability)
- Sources: Usually iid. This talk: Hidden-Markov Model





Organization

- 1. Goal: Compressing Symbols
 - What/why
- 2. Polarization & Polar Codes (for iid sources)
- 3. Polar codes for Markov Sources

Compression: Main Questions

For a source distribution on $(X_1, X_2, ..., X_n)$:

- 1. How much can we compress?
 - [Shannon '48]: Down to the **entropy** $H(X_1, X_2, ... X_n)$ [non-explicit] E.g. for iid Bernoulli(p): entropy = nH(p).
- 2. Efficiency?
 - Efficiency of algorithms: compression/decompression (n)
 - Efficiency of code: Quickly approach the entropy rate $n \text{ symbols} \mapsto nH(p) + n^{1-\delta} \text{ symbols} \quad \text{vs.} \quad n \text{ symbols} \mapsto nH(p) + o(n)$

Achieves within ϵ of entropy rate ($n \text{ } symbols \mapsto n[H(p) + \epsilon]$) at blocklength $n \geq poly(\frac{1}{\epsilon})$

- 3. Linearity?
 - Useful for channel coding (as we will see)

Our Scheme: Compressing HMM sources

Compression/decompression algorithms which, given the HMM source, achieve:

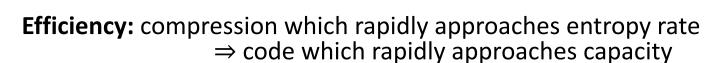
- 1. Poly-time compression/decompression
- 2. Linear
- 3. Rapidly approach entropy rate: For $X^n := (X_1, X_2, ... X_n)$ from source

$$n \text{ symbols} \mapsto H(X^n) + \tau^{O(1)} \cdot n^{1-\delta} \text{ symbols}$$
 (for HMM with mixing time τ)

- Previously unknown how to achieve all 3 above.
 - Non-explicit: $n \mapsto H(X^n) + \sqrt{n}$
 - [Lempel-Ziv]: $n \mapsto H(X^n) + o(n)$. Nonlinear. But, works for unknown HMM.
- Our result: Enabled by Polar Codes

Detour: Compression ⇒ Error-Correction

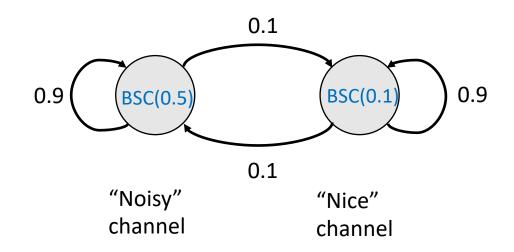
- Given a source D, corresponding Additive Channel: Alice sends $\mathbf{x} \in \mathbb{F}_q^n$ Bob receives $\mathbf{y} = \mathbf{x} + \mathbf{e}$ for $e = (e_1, e_2, \dots e_n) \sim D$
- **Linear compression** scheme for $e \sim D \Rightarrow$ Linear error-correcting code for D-channel:
 - Let $P\colon \mathbb{F}_q^n \to \mathbb{F}_q^{n-k}$ be compression matrix. **Pe** can be decoded to **e** whp when $e \sim D$
 - Alice encodes into nullspace(P): $x \in Null(P)$
 - Bob receives y = x + e
 - Bob computes Py = Px + Pe = Pe, and recovers the error **e**





Application: Correcting Markovian Errors

- Our result yields efficient errorcorrecting codes for Markovian errors.
- Eg: Channel has two states, "noisy" and "nice", and transitions between them.



Remainder of this talk

- Focus on compressing Hidden-Markov Sources
- For simplicity, alphabet = \mathbb{F}_2

The plan:

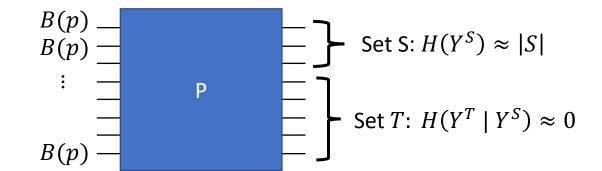
- 1. Polar codes for compressing iid Bernoulli(p) bits.
- 2. Reduce HMM to iid case

Polar Codes

- Linear compression / error-correcting codes
- Introduced by [Arikan '08], efficiency first analyzed in [Guruswami-Xia '13], extended in [BGNRS '18]
- Efficiency: First error-correcting codes to ``achieve capacity at polynomial blocklengths'': within ϵ of capacity at blocklengths $n \geq poly(\frac{1}{\epsilon})$
- Simple, elegant, purely information-theoretic construction

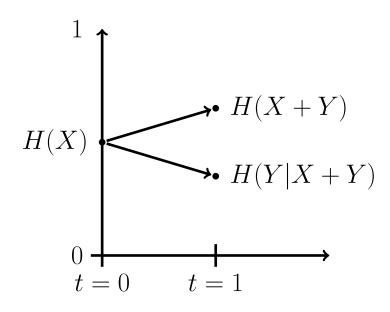
Compression via Polarization

- Goal: Compress n iid Bernoulli(p) bits
- Polarization ⇒ Compression:
 - Suppose we have invertible transform P such that, on input $B(p)^n$, first block of outputs (set S) have \approx full entropy
 - Compression: Output Y^S .
 - **Decompression:** Since $H(Y^T \mid Y^S) \approx 0$, can guess Y^T whp, then invert P to decompress.

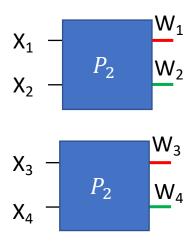


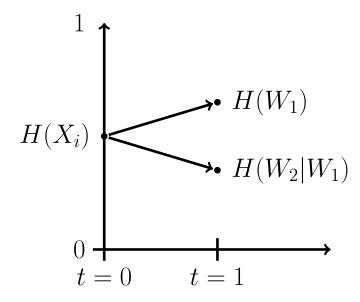
• The following 2x2 transform over \mathbb{F}_2 "polarizes" entropies:

- Consider X, Y iid B(p), for $p \in (0, 1)$
- P_2 invertible $\Longrightarrow H(X,Y) = H(X+Y,Y)$
- H(X + Y) > H(X)
- Thus, H(Y | X+Y) < H(Y)
- Now recurse!

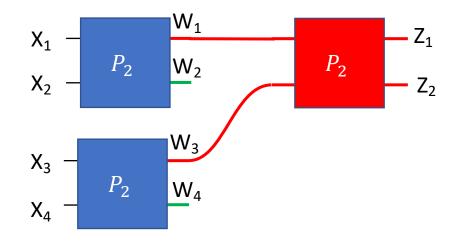


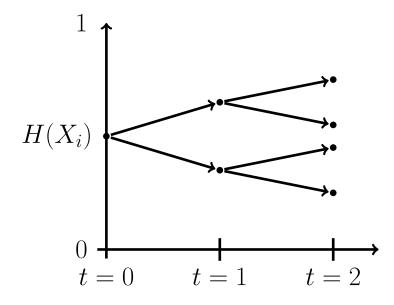
Consider X_i iid B(p), for $p \in (0, 1)$



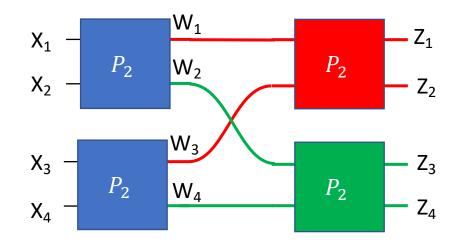


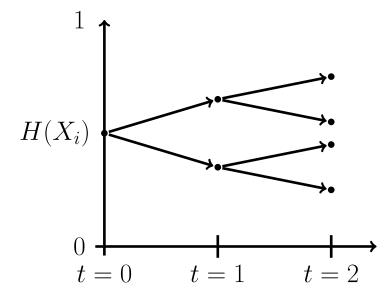
Consider X_i iid B(p), for $p \in (0, 1)$



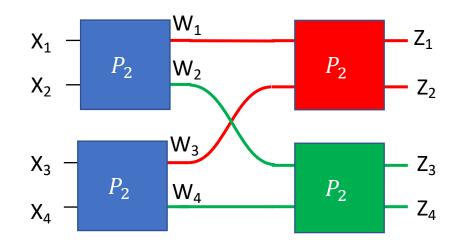


Consider X_i iid B(p), for $p \in (0, 1)$

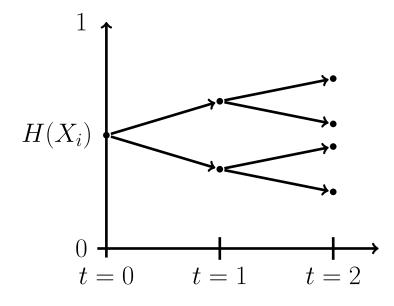




Consider X_i iid B(p), for $p \in (0, 1)$



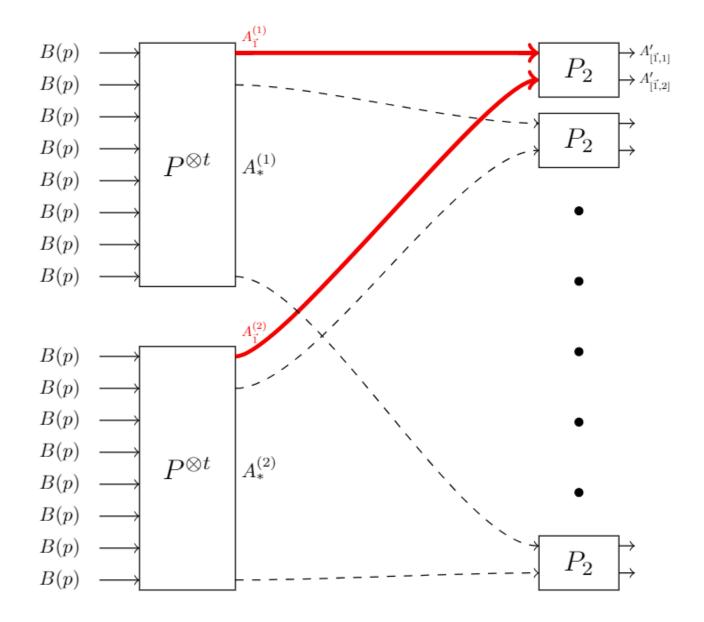
Consider $H(A_i|A^{< i})$:



Hope: most of these entropies eventually close to 0 or 1

• In general, the recursion is:

Equivalent to: $P_{2^t} \stackrel{\text{def}}{=} P_2^{\otimes t}$



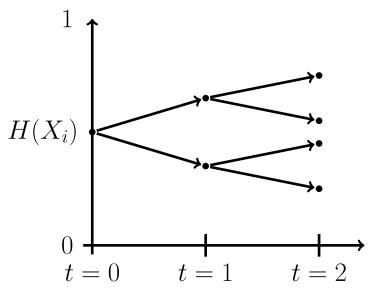
Analysis: Arikan Martingale

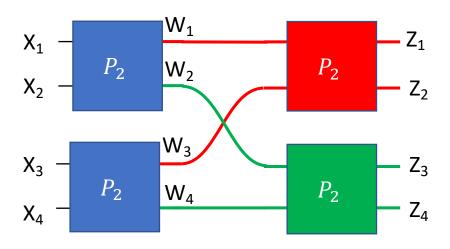
• Let Z_t be entropy of a random wire conditioned on wires above it:

$$Z_t = H(A_t[i] \mid A_t[< i])$$

• Z_t forms a martingale

$$\mathbb{E}[Z_{t+1} \mid Z_t] = Z_t$$
 because entropy conserved

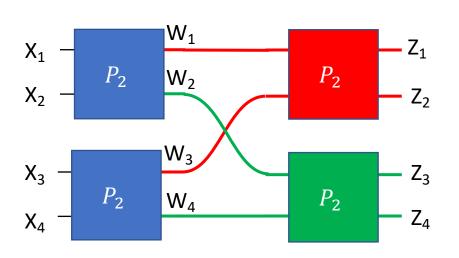


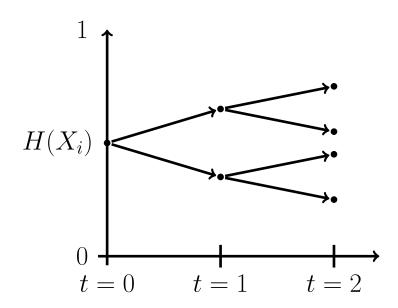


Analysis: Arikan Martingale

We want **fast convergence**: To achieve ϵ -close to entropy rate efficiently, ie with blocklength $n=2^t=poly(\frac{1}{\epsilon})$, we need:

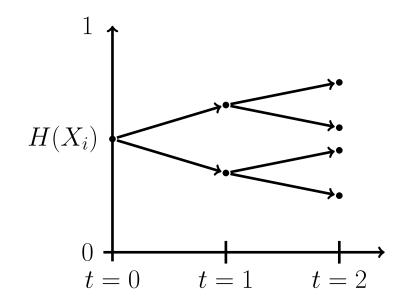
$$t \ge \Omega(\log(1/\epsilon)) \implies \Pr[Z_t \not\in (4^{-t}, 1 - 4^{-t})] \le \epsilon$$





Martingale Convergence

- NOT every [0, 1] martingale converges to 0 or 1:
 - $X_{t+1} = X_t \pm 2^{-t}$
 - $\lim_{t\to\infty} X_t$ converges to Uniform[0, 1]
- Will introduce sufficient **local** conditions for fast convergence: "Local Polarization"



Local Polarization

Properties of the Martingale:

1. Variance in the Middle:

$$\forall \tau, \exists \sigma_{\tau} \text{ s.t. } Z_t \in (\tau, 1 - \tau) \implies Var[Z_{t+1}|Z_t] \geq \sigma_{\tau}$$

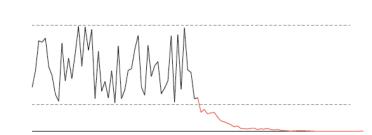
2. Suction at the Ends:

$$\exists \tau \text{ s.t. } Z_t < \tau \implies \Pr[Z_{t+1} < Z_t/100] \ge 1/2$$

and symmetrically for the upper end.

Recall, we want to show:

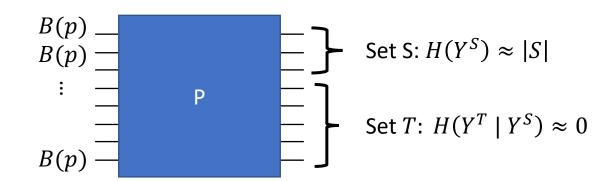
$$t \ge \Omega(\log(1/\epsilon)) \implies \Pr[Z_t \not\in (4^{-t}, 1 - 4^{-t})] \le \epsilon$$



(easy to show these properties)

Results of Polarization

- So far: After $t = O(\log 1/\epsilon)$ steps of polarization, the resulting polar code of blocklength $n = 2^t = poly\left(\frac{1}{\epsilon}\right)$ has a set T of indices s.t:
 - $\forall i \in T$: $H(Y_i|Y^{< i}) \approx 0$
 - $|T|/n \le 1 H(p) + \epsilon$



- Compression: Output Y^S
- Decompression: Guess Y^T given Y^S (ML decoding)

/26

Polar Codes

Inputs Auxiliary Info

Theorem: For every distribution D over (X, W), where $X \in \mathbb{F}_q$,

Let $X = (X_1, X_2, ... X_n)$ and $W = (W_1, W_2, ... W_n)$ where $(X_i, W_i) \sim D$ iid Then, entropies of $Y := P_n(X)$ are polarized:

 $\forall \epsilon$: if $n \geq poly\left(\frac{1}{\epsilon}\right)$, then all but ϵ -fraction of indices $i \in [n]$ have entropies

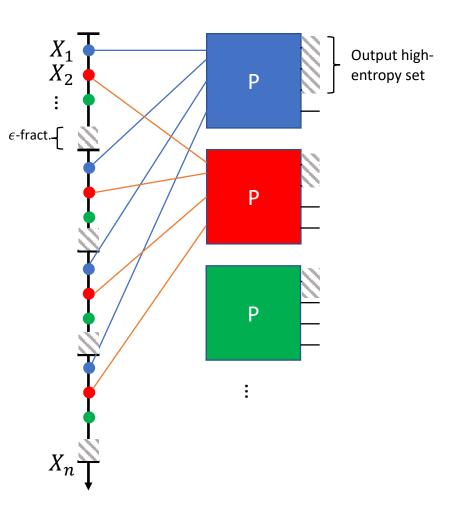
$$H(Y_i|Y_{< i}, W) \notin (n^{-4}, 1 - n^{-4})$$

Compressing Hidden Markov Sources

 X_1 X_2 \vdots

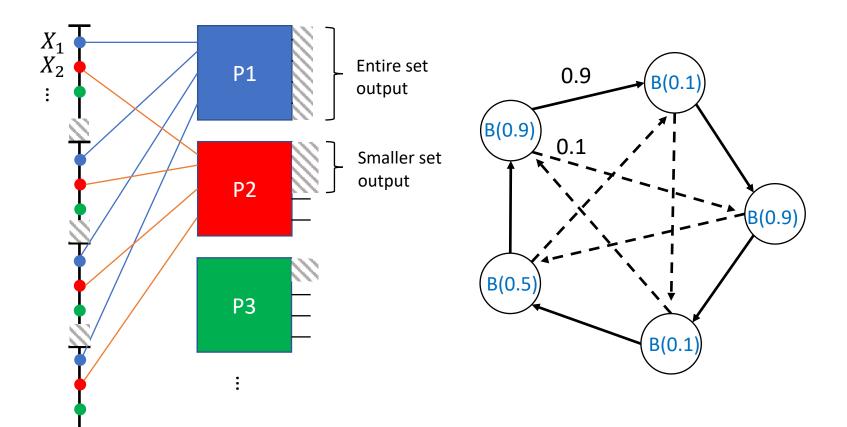
- $X_1, X_2, ... X_n$ are outputs of a Hidden-Markov Model
 - Not independent: Lots of dependencies between neighboring symbols
- Goal: Want to compress to within $H(X^n) + \epsilon n$
- First glance: everything breaks!
 - Polar code analysis (Martingale) relied on input being independent, identical
- But, simple construction works...

Compression Construction



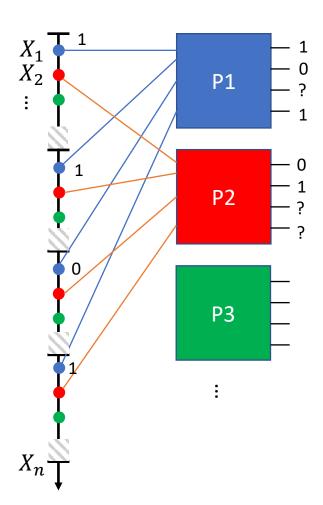
- $X_1, X_2, ... X_n$: outputs of a stationary HMM
 - Mixing time $\ll n$
- Break input into \sqrt{n} blocks of \sqrt{n} .
- Polarize the 1st symbols of each block.
 - These are approx. independent!
- Then Polarize the 2nd symbols
 - Polarizing , conditioned on •
 - Joint distribution of all {(●,●)} is approx. independent across blocks
- Output last ϵ -fraction of each block in the clear

Example



- HMM: Marginally, X_i is uniform bit
- P1: inputs have full entropy
- P2: inputs have lower entropy, conditioned on P1

Decompression



Polar-decoder Black Box:

Input:

- Product distribution on inputs
- Setting of high-entropy polarization outputs

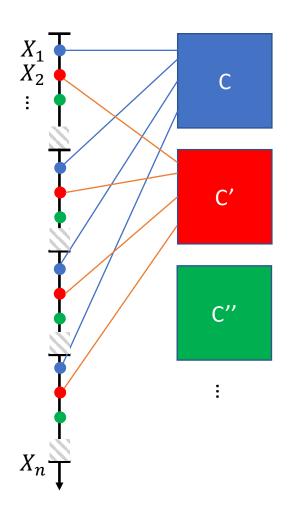
Output:

Estimate of input

Markov decoding:

- 1. Decompress P1 outputs
- 2. Compute distribution of P2 inputs, conditioned on P1
- 3. Decompress P2 outputs
- 4. ...

Decompression: Extras



Note:

Could have done this with any black-box compression scheme for independent, non-identically distributed symbols.

But: non-linear (and messy)

 Linear compression black-box for every fixed distribution on symbols

⇒ overall linear compression

Polar codes are particularly suited for this