Calibration in Deep Learning: Theory & Practice

Preetum Nakkiran

Aspen Center for Physics | Apple Inc. | Feb 28 2023
Motivation

"Why do we get more than we asked for in Deep Learning?"

- Small Test Loss
- "Good representations"
- Good transfer & fine-tuning
- Good OOD robustness
- Good calibration

Small Train Loss → SGD
Motivation

“Why do we get more than we asked for in Deep Learning?”

- Small Test Loss
- “Good representations”
- Good transfer & fine-tuning
- Good OOD robustness
- Good calibration

Goal: What’s important about this box?
What is Calibration?

Setting: Binary classification

Test distribution D over $(x, y) \in \mathcal{X} \times \{0,1\}$

Predictor $f : \mathcal{X} \rightarrow [0,1]$

"$f(x)$ is confidence of $y(x) = 1$"

Perfect calibration is a property of the pair (f, D)
Calibration: Predictor f is perfectly calibrated w.r.t. distribution D if...
Calibration: Predictor f is perfectly calibrated w.r.t. distribution D if...
Calibration: Predictor f is perfectly calibrated w.r.t. distribution D if...
Calibration: Predictor f is perfectly calibrated w.r.t. distribution D if...
Perfect Calibration:

Predictor f is perfectly calibrated w.r.t. D if

$$\forall \ell \in [0,1] : \quad \mathbb{E}_{x,y \sim D}[y \mid f(x) = \ell] = \ell$$
What’s calibration good for?

1. **Interpretability**: $f(x)$ is a meaningful quantity, “confidence that $y = 1$”
 e.g. doctor informing patient of “80% probability of heart disease”

2. **Operational Uncertainty**: Systems downstream of $f(x)$ can behave differently on “high confidence” vs. “low confidence” inputs

$$
\begin{align*}
\Pr[y=1 \mid f(x) = 0.5] &= 0.5 \\
\Pr[y=1 \mid f(x) = 0.8] &= 0.8 \\
\Pr[y=1 \mid f(x) = 1.0] &= 1.0
\end{align*}
$$
Perfect Calibration:

Predictor f is perfectly calibrated w.r.t. D if

$$\forall \ell \in [0,1]: \mathbb{E}_{x,y \sim D}[y \mid f(x) = \ell] = \ell$$

What’s calibration good for?

1. **Interpretability**: $f(x)$ is a meaningful quantity, “confidence that $y = 1$”
 e.g. doctor informing patient of “80% probability of heart disease”

2. **Operational Uncertainty**: Systems downstream of $f(x)$ can behave differently on “high confidence” vs. “low confidence” inputs

 $$\begin{align*}
 \text{Pr}[y=1 \mid f(x) = 0.5] &= 0.5 \\
 \text{Pr}[y=1 \mid f(x) = 0.8] &= 0.8 \\
 \text{Pr}[y=1 \mid f(x) = 1.0] &= 1.0
 \end{align*}$$

3. **Interesting**: “Models knows when it doesn’t know” self-consistency
Calibration is **orthogonal** to accuracy

<table>
<thead>
<tr>
<th>input x</th>
<th>ground-truth y</th>
<th>prediction $f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Goal

Understand when and why (DL) models are well-calibrated (and what factors affect calibration)
This Talk

1. How to Define & Measure Miscalibration

2. Empirical Conjectures

 + upcoming work

3. Theory

 “Loss minimization yields multicalibration for large neural networks.” In submission. [Kalai]
This Talk

1. How to Define & Measure Miscalibration

2. Empirical Conjectures
 + upcoming work

3. Theory
 “Loss minimization yields multicalibration for large neural networks.” In submission. [Kalai]
Part 2. Calibration of DNNs, Experimentally

Can we empirically characterize which DNNs have small calibration error?
No single design choice determines calibration:
- Not just architecture
- Not just model size
- Not just test accuracy/loss

ex: small 3-layer MLP is well-calibrated on ImageNet
Predicting Good Probabilities With Supervised Learning

Alexandra Nicolaccio-Mirizzi
Rich Caruana

[2005]
On Calibration of Modern Neural Networks

Chuan Guo*† Geoff Pleiss*‡ Yu Sun*‡ Killian Q. Weinberger†

ResNet (2016) CIFAR-100

Predicting Good Probabilities With Supervised Learning

Alexandra Nicolece-Medali
Ricardo Caruana

[2005]

Revisiting the Calibration of Modern Neural Networks

Matthias Minderer
Xiaohua Zhai
Josip Djolonga
Neil Houlsby
Rob Romijnders
Frances Hubschman
Google Research, Brain Team

[2021]

POORLY-CALIBRATED

WELL-CALIBRATED

[2017]
Proposal: Study test-calibration as we study test-error.

Fundamental Decomposition

\[\mu_{\text{Test}} \leq \mu_{\text{Train}} + |\mu_{\text{Test}} - \mu_{\text{Train}}| \]

- \(\mu_{\text{Test}} \): Calibration Error on Test Set
- \(\mu_{\text{Train}} \): Calibration Error on Train Set
- \(|\mu_{\text{Test}} - \mu_{\text{Train}}| \): Calibration Generalization Gap
Proposal: Study test-calibration as we study test-error.

Fundamental Decomposition

\[
\mu_{\text{Test}} \leq \mu_{\text{Train}} + |\mu_{\text{Test}} - \mu_{\text{Train}}|
\]

Trivial, BUT:
1. Suggests methodology: study each part separately
2. Insightful: parts are simpler than the whole
ViT on binary-CIFAR-10

(higher=worse)

Train Error, Test Error, Train ECE, and Test ECE over train time.
End of training: models are overconfident

Train \{Error, CE\} \approx 0
Test \{Error, CE\} \gg 0
ViT on binary-CIFAR-10

End of training: models are overconfident

Train \{\text{Error,CE}\} \approx 0
Test \{\text{Error,CE}\} \gg 0

Throughout training:
Train CE \approx 0

(higher=worse)
Fundamental Decomposition

\[\mu_{\text{Test}} \leq \mu_{\text{Train}} + |\mu_{\text{Test}} - \mu_{\text{Train}}| \]

Calibration Error on Test Set \quad Calibration Error on Train Set \quad Calibration Generalization Gap

* depth \(\geq 2 \), trained with proper scoring rule, no severe augmentations, ...
Fundamental Decomposition

\[\mu_{\text{Test}} \leq \mu_{\text{Train}} + |\mu_{\text{Test}} - \mu_{\text{Train}}| \]

Calibration Error on Test Set \quad Calibration Error on Train Set \quad Calibration Generalization Gap

Empirical Claim 1

For almost all* DNNs

\[\mu_{\text{Train}} \approx 0 \]

*depth \geq 2, trained with proper scoring rule, no severe augmentations, ...
Fundamental Decomposition

\[\mu_{\text{Test}} \leq \mu_{\text{Train}} + |\mu_{\text{Test}} - \mu_{\text{Train}}| \]

Calibration Error on Test Set \quad \leq \quad \text{Calibration Error on Train Set} \quad + \quad \text{Calibration Generalization Gap}

Empirical Claim 1

For almost all* DNNs

\[\mu_{\text{Train}} \approx 0 \]

*depth \geq 2, trained with proper scoring rule, no severe augmentations, ...
Empirical Claim 1

For almost all* DNNs

$$\mu_{\text{Train}} \approx 0$$

Even when underfitting!

*depth ≥ 2, trained with proper scoring rule, no severe augmentations, ...
Empirical Claim 1
For almost all* DNNs
\[\mu_{\text{Train}} \approx 0 \]

Even when underfitting!

Empirical Claim 2
For almost all* DNNs
\[|\mu_{\text{Test}} - \mu_{\text{Train}}| \leq |\text{TestError} - \text{TrainError}| \]

* depth \(\geq 2 \), trained with proper scoring rule, no severe augmentations, ...
Empirical Claim 1
For almost all* DNNs

\[\mu_{\text{Train}} \approx 0 \]

Even when underfitting!

Empirical Claim 2
For almost all* DNNs

\[|\mu_{\text{Test}} - \mu_{\text{Train}}| \leq |\text{TestError} - \text{TrainError}| \]
Empirical Claim 1

For almost all* DNNs

\[\mu_{\text{Train}} \approx 0 \]
Empirical Claim 1

For almost all* DNNs

$$\mu_{\text{Train}} \approx 0$$
Empirical Claim 2

For almost all* DNNs

|μ_{Test} − μ_{Train}| ≤ |TestError − TrainError|
(Test Calibration Error) \leq |Train Error - Test Error|

“Models with small generalization-gap are typically well-calibrated”
Takeaways

(\text{Test Calibration Error}) \approx |\text{Train Error - Test Error}|

“\textit{Models with small generalization-gap are typically well-calibrated}”
Takeaways

\[(\text{Test Calibration Error}) \leq |\text{Train Error - Test Error}|\]

“Models with small generalization-gap are typically well-calibrated”

The following are well-calibrated:

1. Small models, on large data-sets (e.g. large vision models)
2. All models trained for 1-epoch (e.g. LLMs)
Applications

For any intervention (changing the augmentation, regularizer, etc), study its effect on:

1. Train calibration
2. Generalization gap
Applications: Regularization Strength

$\mu_{\text{Test}} \leq \mu_{\text{Train}} + |\mu_{\text{Test}} - \mu_{\text{Train}}|$

Calibration on Test Set Calibration on Train Set Calibration Generalization Gap
Applications: Data Augmentation

"Standard" data-augmentation (measure-preserving):

- Same TrainCE; Shrinks generalization gap

"Exotic" data-augmentation:

- Increases TrainCE; Shrinks generalization gap
Applications: Data Augmentation

\[\mu_{\text{Test}} \leq \mu_{\text{Train}} + |\mu_{\text{Test}} - \mu_{\text{Train}}| \]

Calibration on Test Set \quad \text{Calibration on Train Set} \quad \text{Calibration Generalization Gap}

![Bar chart showing train KCE for different models](image)
Applications: Data Augmentation

\[\mu_{\text{Test}} \leq \mu_{\text{Train}} + |\mu_{\text{Test}} - \mu_{\text{Train}}| \]

Calibration on Test Set \quad \text{Calibration on Train Set} \quad \text{Calibration Generalization Gap}

![Graphs showing train KCE and KCE Generalization Gap]
Part 3.
Theory

When are Claims 1 & 2 provably true?
Empirical Claim 2

For almost all* DNNs

\[|\mu_{\text{Test}} - \mu_{\text{Train}}| \leq |\text{TestError} - \text{TrainError}| \]
Assumption 1: f is overconfident on test.

$\forall \ell \in [0, 1] : \mathbb{E}_{D_{\text{test}}} [\text{Acc}(f, y) \mid f = \ell] \leq \text{Conf}(v)$
Assumption 1: \(f \) is overconfident on test.

\[
\forall \ell \in [0, 1] : \mathbb{E}_{D_{test}} \left[\text{Acc}(f, y) \mid f = \ell \right] \leq \text{Conf}(v)
\]

Assumption 2: \(f \) is more confident on train than on test.

\[
\mathbb{E}_{D_{train}} \left[\text{Conf}(f) \right] \geq \mathbb{E}_{D_{test}} \left[\text{Conf}(f) \right]
\]

Empirical Claim 2

For almost all* DNNs

\[
\left| \mu_{Test} - \mu_{Train} \right| \leq \left| \text{TestError} - \text{TrainError} \right|
\]
Empirical Claim 2

For almost all* DNNs

\[|\mu_{\text{Test}} - \mu_{\text{Train}}| \leq |\text{TestError} - \text{TrainError}| \]

Assumption 1: \(f \) is overconfident on test.

\[\forall \ell \in [0, 1] : \mathbb{E}_{D_{\text{test}}} [\text{Acc}(f, y) \mid f = \ell] \leq \text{Conf}(\nu) \]

Assumption 2: \(f \) is more confident on train than on test.

\[\mathbb{E}_{D_{\text{train}}} [\text{Conf}(f)] \geq \mathbb{E}_{D_{\text{test}}} [\text{Conf}(f)] \]

Theorem 2 (Calibration Generalization Bound). *Under Assumptions 2 and 3, we have*

\[\text{ECE}(D_{\text{test}}) - \text{ECE}(D_{\text{train}}) \leq \text{Error}(D_{\text{test}}) - \text{Error}(D_{\text{train}}) \]
Empirical Claim 1

For almost all* DNNs

\[\mu_{\text{Train}} \approx 0 \]
Given: Distribution $D = \hat{D} = \{(x_i, y_i)\}_{i \in [n]}$
Given: Distribution $D = \hat{D} = \{(x_i, y_i)\}_{i \in [n]}$

What we'd like to do:

Exactly minimize expected loss, over *all functions*:

$$f^* = \text{argmin}_{f: \mathcal{X} \to [0,1]} \mathbb{E}_{x, y \sim D} [\ell(f(x), y)]$$
Given: Distribution $D = \hat{D} = \{(x_i, y_i)\}_{i \in [n]}$

What we’d like to do:

Exactly minimize expected loss, over *all functions*:

$$f^* = \arg\min_{f: \mathcal{X} \to [0,1]} \mathbb{E}_{x,y \sim D} [\ell(f(x), y)]$$

$$\implies f^*(x) = p_D(y|x)$$

perfectly calibrated
What we actually do:

Run SGD* to \textit{approximately minimize} expected loss, over \textit{restricted family} \(\{f_\theta : \theta \in \Theta\} \):

\[
\tilde{f} = \text{SGDmin}_{\theta \in \Theta} \mathbb{E}_{x,y \sim \mathcal{D}} [\ell(f_\theta(x), y)]
\]

What we’d like to do:

\textit{Exactly minimize} expected loss, over \textit{all functions}:

\[
f^* = \text{argmin}_{f : \mathcal{X} \to [0,1]} \mathbb{E}_{x,y \sim \mathcal{D}} [\ell(f(x), y)]
\]

\Rightarrow \quad f^*(x) = p_\mathcal{D}(y|x)

perfectly calibrated

Given: Distribution \(D = \hat{D} = \{(x_i, y_i)\}_{i \in [n]} \)
What we actually do:

Run SGD* to \emph{approximately minimize} expected loss, over \emph{restricted family} \(\{f_\theta : \theta \in \Theta\} \):

\[
\tilde{f} = \text{SGDmin}_{\theta \in \Theta} \mathbb{E}_{x,y \sim D} [\ell(f_\theta(x), y)]
\]

What we’d like to do:

\emph{Exactly minimize} expected loss, over \emph{all functions}:

\[
f^* = \text{argmin}_{f : \mathcal{X} \to [0,1]} \mathbb{E}_{x,y \sim \mathcal{D}} [\ell(f(x), y)]
\]

\[
\implies f^*(x) = p_D(y|x)
\]

perfectly calibrated

Given: Distribution \(D = \hat{D} = \{(x_i, y_i)\}_{i \in [n]} \)

\[
\text{Perfectly calibrated (Bayes-optimal)}
\]

\[
\text{Near-perfectly calibrated}
\]
What we actually do:
Run SGD* to *approximately minimize* expected loss, over restricted family \{f_\theta : \theta \in \Theta\}:

\[
\tilde{f} = \text{SGDmin}_{\theta \in \Theta} \mathbb{E}_{x,y \sim D} [\ell(f_\theta(x), y)]
\]

What we'd like to do:
Exactly minimize expected loss, over all functions:

\[
f^* = \text{argmin}_{f : \mathcal{X} \to [0,1]} \mathbb{E}_{x,y \sim D} [\ell(f(x), y)]
\]

\[\Rightarrow f^*(x) = p_D(y|x)\]
perfectly calibrated

Given: Distribution \(D = \hat{D} = \{(x_i, y_i)\}_{i \in [n]}\)

what's special about this point?
In general, when does:

\textit{suboptimal} loss-minimization \implies \textit{near-optimal} calibration?
For all f, D, and proper loss ℓ, TFAE:

1. f is perfectly calibrated w.r.t. D

2. The loss of $f : \mathcal{X} \to [0,1]$ on D cannot be improved by post-processing $\kappa : [0,1] \to [0,1]$

 \[\forall \kappa : [0,1] \to [0,1], \quad \mathcal{L}_D(f) \leq \mathcal{L}_D(\kappa \circ f) \]

 where $\mathcal{L}_D(f) := \mathbb{E}_{x,y \sim D}[\ell(f(x), y)]$ is the expected loss
For all f, D, and proper loss ℓ, TFAE:

1. f is perfectly calibrated w.r.t. D

2. The loss of $f : \mathcal{X} \rightarrow [0,1]$ on D cannot be improved by post-processing $\kappa : [0,1] \rightarrow [0,1]$

 $$\forall \kappa : [0,1] \rightarrow [0,1], \quad \mathcal{L}_D(f) \leq \mathcal{L}_D(\kappa \circ f)$$

where $\mathcal{L}_D(f) := \mathbb{E}_{x,y \sim D}[\ell(f(x), y)]$ is the expected loss.
For all f, D, and proper loss ℓ, TFAE:

1. f is perfectly calibrated w.r.t. D

2. The loss of $f : \mathcal{X} \to [0,1]$ on D cannot be improved by post-processing $\kappa : [0,1] \to [0,1]$

 \[\forall \kappa : [0,1] \to [0,1], \quad \mathcal{L}_D(f) \leq \mathcal{L}_D(\kappa \circ f) \]

 where $\mathcal{L}_D(f) := \mathbb{E}_{x,y \sim D} [\ell(f(x), y)]$ is the expected loss.
For all \(f, D \), and proper loss \(\ell \), TFAE:

1. \(f \) is perfectly calibrated w.r.t. \(D \)
2. The loss of \(f \) on \(D \) cannot be improved by post-processing:
 \[
 \forall \kappa : \mathbb{R} \to \mathbb{R}, \quad \mathcal{L}_D(f) \leq \mathcal{L}_D(\kappa \circ f)
 \]

Suggestive properties:

1. Requires only "weak local-optimality", not global optimality
2. Post-processing can be represented by adding a layer
For all f, D, and proper loss ℓ, TFAE:

1. f is perfectly calibrated w.r.t. D

2. The loss of f on D cannot be improved by post-processing:

$$\forall \kappa : \mathbb{R} \to \mathbb{R}, \quad \mathcal{L}_D(f) \leq \mathcal{L}_D(\kappa \circ f)$$

Suggestive properties:

1. Requires only "weak local-optimality", not global optimality

2. Post-processing can be represented by adding a layer
For all \(f, D, \) and proper loss \(\mathcal{L} \), TFAE:

1. \(f \) is perfectly calibrated w.r.t. \(D \)
2. The loss of \(f \) on \(D \) cannot be improved by post-processing:
 \[
 \forall \kappa : \mathbb{R} \rightarrow \mathbb{R}, \quad \mathcal{L}_D(f) \leq \mathcal{L}_D(\kappa \circ f)
 \]

Suggestive properties:

1. Requires only “weak local-optimality”, not global optimality
2. Post-processing can be represented by adding a layer
For all f, D, and proper loss ℓ, TFAE:

1. f is perfectly calibrated w.r.t. D

2. The loss of f on D cannot be improved by post-processing:

 \[\forall \kappa : \mathbb{R} \to \mathbb{R}, \quad \mathcal{L}_D(f) \leq \mathcal{L}_D(\kappa \circ f) \]

Problems:

1. Only characterizes perfect calibration

2. Requires composition with arbitrary functions (not just “nice” ones that can be represented by NNs)
Toy Theorem

“f is perfectly calibrated iff its loss can’t be improved at all by post-processing with an arbitrary function”
| **Toy Theorem** | “f is perfectly calibrated iff its loss can’t be improved at all by post-processing with an arbitrary function” |
| **Dream Theorem** | “f is close to calibrated iff its loss can’t be improved much by post-processing with a smooth function” |
Toy Theorem

“\(f \) is perfectly calibrated iff its loss can’t be improved at all by post-processing with an arbitrary function”

Dream Theorem

“\(f \) is close to calibrated iff its loss can’t be improved much by post-processing with a smooth function”

How to formalize “close to”? Calibration distance \(d_{\text{CE}}(f) \)!
<table>
<thead>
<tr>
<th>Toy Theorem</th>
<th>"f is perfectly calibrated iff its loss can’t be improved at all by post-processing with an arbitrary function"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dream Theorem</td>
<td>"f is close to calibrated iff its loss can’t be improved much by post-processing with a smooth function"</td>
</tr>
</tbody>
</table>

How to formalize "close to"? Calibration distance $d_{CE}(f)$!
Dream Theorem

“f is close to calibrated iff its loss can’t be improved much by post-processing with a smooth function”
Dream Theorem

“\(f \) is close to calibrated iff its loss can’t be improved much by post-processing with a smooth function”

Theorem

\((\text{distance from calibration}) \sim \text{poly(\text{potential post-processing improvement})}\)
Dream Theorem | “f is close to calibrated iff its loss can’t be improved much by post-processing with a smooth function”

Theorem | (distance from calibration) ~ poly(potential post-processing improvement)
Dream Theorem

“\(f \) is close to calibrated iff its loss can’t be improved much by post-processing with a smooth function”

Theorem

\[(\text{distance from calibration}) \sim \text{poly(\text{potential post-processing improvement})}\]

Theorem 1.3. There exist constants \(c_1, c_2 > 0 \) such that for all predictors \(f : \mathcal{X} \to [0, 1] \) and all distributions \(D \), the following holds.

Let \(K \) denote the family of all post-processing functions \(\kappa : [0, 1] \to [0, 1] \) such that the update function \(\eta(f) = \kappa(f) - f \) is 1-Lipschitz. Define the “gap calibration error” of \(f \) as the maximum improvement in MSE loss via post-processings in \(K \):

\[
gapCE(f) = \operatorname{MSE}_D(f) - \min_{\kappa \in K} \operatorname{MSE}_D(\kappa \circ f).
\]

Then, the maximum loss improvement (\(\text{gapCE} \)) polynomially bounds the distance from calibration (\(\text{dCE} \)):

\[
c_1 \ \text{dCE}(f)^4 \leq \text{gapCE}(f) \leq c_2 \ \text{dCE}(f).
\]
When is the “no loss improvement” condition satisfied?

1. (Algorithmic assumption): If it were possible to improve loss via a simple post-processing, SGD would have done it already.

\[f \mapsto \kappa \circ f \] is a “simple” update for SGD on deep nets
When is the “no loss improvement” condition satisfied?

2. **(Human-in-loop assumption):**
 If it were possible to add a layer, train it optimally, and improve the loss, then the human trainer would have done it already
2. **(Human-in-loop assumption):**
 If it were possible to add a layer, train it optimally, and improve the loss, then the human trainer would have done it already

When is the “no loss improvement” condition satisfied?
When is the “no loss improvement” condition satisfied?

2. **(Human-in-loop assumption):**
 If it were possible to add a layer, train it optimally, and improve the loss, then the human trainer would have done it already.
When is the “no loss improvement” condition satisfied?

2. (Human-in-loop assumption):
 If it were possible to add a layer, train it optimally, and improve the loss, then the human trainer would have done it already \(\rightarrow \) output of human is “nearly post-processing optimal”
When is the “no loss improvement” condition satisfied?

3. (Theory assumption):
 Structural risk minimization with any “well-behaved” complexity measure

\[\min_{f \in \mathcal{F}} \text{MSE}_D(f) + \lambda \mu(f). \]
Implications

• Generic characterization of when (sub-optimal) loss-minimization yields (near-optimal) calibration

• Importance of depth for calibration

• Importance of proper scoring rules for calibration

• Non-Baysean reasons for calibration
Q: What’s important about this box?

A: Output is (nearly) post-processing-optimal w.r.t. loss
Thanks!

In Collaboration With

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parikshit Gopalan</td>
<td>Apple</td>
</tr>
<tr>
<td>Vimal Thilak</td>
<td>Apple</td>
</tr>
<tr>
<td>Omid Saremi</td>
<td>Apple</td>
</tr>
<tr>
<td>Joshua Suskind</td>
<td>Apple</td>
</tr>
<tr>
<td>Jarosław Błasiok</td>
<td>Columbia</td>
</tr>
<tr>
<td>Annabelle Carrell</td>
<td>Cambridge, Apple intern</td>
</tr>
<tr>
<td>Lunjia Hu</td>
<td>Stanford, Apple intern</td>
</tr>
<tr>
<td>Elan Rosenfeld</td>
<td>CMU, Apple intern</td>
</tr>
</tbody>
</table>
Defining “Almost All”

Definition-by-example:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data distribution</td>
<td>Any</td>
</tr>
<tr>
<td>Architecture</td>
<td>Any* (MLP, ConvNet, Transformer,…</td>
</tr>
<tr>
<td>Model depth</td>
<td>≥ 2</td>
</tr>
<tr>
<td>Model width</td>
<td>Any* (≥ 100)</td>
</tr>
<tr>
<td>Optimizer</td>
<td>Any* SGD-variant (SGD, Adam, …)</td>
</tr>
<tr>
<td>Optimization steps</td>
<td>Any* (≥ 10, after “warm-up” period)</td>
</tr>
<tr>
<td>Sample size</td>
<td>Any</td>
</tr>
<tr>
<td>Data-aug</td>
<td>None, or “standard” (measure-preserving)</td>
</tr>
<tr>
<td>Loss function</td>
<td>Any proper scoring rule (MSE, xent, …)</td>
</tr>
<tr>
<td>Regularization</td>
<td>None, or very weak (e.g. wd=1-e4)</td>
</tr>
</tbody>
</table>
Empirical Claim 1:
For almost all* ML models

\[\mu_{\text{Train}} \approx 0 \]
Empirical Claim 1:
For almost all* ML models

\[\mu_{\text{Train}} \approx 0 \]

Surprising: small DNNs, with high \textit{train error}, have good train calibration.

(ResNets on binary-CIFAR-10)
Part 1.
Measuring Miscalibration

Most models aren't *perfectly calibrated*.
How do we measure *degree-of-miscalibration*?
Summary: How to Measure Miscalibration [Błasiok, Gopalan, Hu, N. STOC 2023]
Most models aren't *perfectly calibrated*. How do we measure *degree-of-miscalibration*?

Desire:

Function $\mu_D(f) \in [0, \infty)$ that measures "degree of miscalibration"
Summary: How to Measure Miscalibration [Błasiok, Gopalan, Hu, N. STOC 2023]

Most models aren’t perfectly calibrated. How do we measure degree-of-miscalibration?

DON’T:

• Use “Expected Calibration Error (ECE)”

\[
\text{ECE}(f) = \mathbb{E}[| \mathbb{E}[y | f(x)] - f(x) |]
\]

ECE\((f)\) is discontinuous in \(f\)!
Summary: How to Measure Miscalibration
[Błasiok, Gopalan, Hu, N. STOC 2023]

Most models aren’t *perfectly calibrated*. How do we measure degree-of-miscalibration?

DON’T:

- Use “Expected Calibration Error (ECE)”

 \[
 \text{ECE}(f) = \mathbb{E}[|\mathbb{E}[y | f(x)] - f(x)|]
 \]

 ECE\((f)\) is discontinuous in \(f\)!

DO:

- Use “\(\ell_1\) distance from perfect calibration”

\[
\text{dCE}(f)
\]

set of perfectly-calibrated functions
Summary: How to Measure Miscalibration

Most models aren’t perfectly calibrated. How do we measure degree-of-miscalibration?

DON’T:

• Use “Expected Calibration Error (ECE)”

\[ECE(f) = \mathbb{E}[|\mathbb{E}[y | f(x)] - f(x)|] \]

ECE(f) is discontinuous in f!

DO:

• Use “\(\ell_1\) distance from perfect calibration”

\[dCE(f) \]

set of perfectly-calibrated functions

• Estimate with a “consistent calibration metric”
 e.g. Kernel calibration error (kCE)

\[kCE_D(f) := \sup_{w:||w||_K \leq 1} \mathbb{E}_{(f,y) \sim \mathcal{D}_f} [w(f)(y - f)] \]
Measuring Miscalibration

Most models aren’t perfectly calibrated.

How to measure degree-of-miscalibration?

Many proposed measures are problematic. Eg, ECE:

\[
ECE(f) = \mathbb{E}[| \mathbb{E}[y | f(x)] - f(x) |]
\]
Problem: \(\text{ECE}(f) \) is discontinuous in \(f \)

1. \(\| f_1 - f_2 \| \leq \epsilon \)

2. \(\text{ECE}(f_1) - \text{ECE}(f_2) \geq 0.5 - \epsilon \)
Problem: $ECE(f)$ is discontinuous in f

1. $\|f_1 - f_2\| \leq \varepsilon$

2. $ECE(f_1) - ECE(f_2) \geq 0.5 - \varepsilon$

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>$f_1(x)$</th>
<th>$f_2(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.5+\varepsilon</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.5+\varepsilon</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.5+\varepsilon</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0.5-\varepsilon</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0.5-\varepsilon</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0.5-\varepsilon</td>
</tr>
</tbody>
</table>

$ECE(f_1) = 0$ $ECE(f_2) \approx 0.5$

$ECE(f) = \mathbb{E}[|\mathbb{E}[y | f(x)] - f(x)|]$
Problem: \(\text{ECE}(f) \) is discontinuous in \(f \)

1. \(\| f_1 - f_2 \| \leq \varepsilon \)

2. \(\text{ECE}(f_1) - \text{ECE}(f_2) \geq 0.5 - \varepsilon \)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>(f_1(x))</th>
<th>(f_2(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.5 + \varepsilon</td>
<td>0.5 + \varepsilon</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.5 + \varepsilon</td>
<td>0.5 + \varepsilon</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.5 - \varepsilon</td>
<td>0.5 - \varepsilon</td>
</tr>
<tr>
<td>0</td>
<td>0.5</td>
<td>0.5 - \varepsilon</td>
<td>0.5 - \varepsilon</td>
</tr>
<tr>
<td>0</td>
<td>0.5</td>
<td>0.5 - \varepsilon</td>
<td>0.5 - \varepsilon</td>
</tr>
</tbody>
</table>

\[\text{ECE}(f_1) = 0 \quad \text{ECE}(f_2) \approx 0.5 \]

\[\text{ECE}(f) = \mathbb{E}[|\mathbb{E}[y \mid f(x)] - f(x)|] \]
Axiomatic construction of degree-of-miscalibration $\mu_D(f)$?

Want $\mu(f) \in \mathbb{R}_{\geq 0}$ to satisfy:

1. Correctness:
 $\mu(f) = 0 \iff f$ is perfectly calibrated

2. $\mu(f)$ is continuous in f

3. Can be estimated from samples
Axiomatic construction of **degree-of-miscalibration** $\mu_D(f)$?

Want $\mu(f) \in \mathbb{R}_{\geq 0}$ to satisfy:

1. **Correctness:**

 $\mu(f) = 0 \iff f$ is perfectly calibrated

2. $\mu(f)$ is continuous in f

3. Can be estimated from samples

<table>
<thead>
<tr>
<th></th>
<th>Correctness</th>
<th>Continuity</th>
<th>Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Binned-ECE</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Brier</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NLL</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NCE</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>kCE/MMCE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>smCE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Correctness:
\[\mu(f) = 0 \iff f \text{ is perfectly calibrated} \]

Robust Correctness (informally):
\[\mu(f) \text{ is "close" to } 0 \iff f \text{ is "close" to perfectly calibrated} \]
Correctness:
\[\mu(f) = 0 \iff f \text{ is perfectly calibrated} \]

Robust Correctness (informally):
\[\mu(f) \text{ is "close" to 0} \iff f \text{ is "close" to perfectly calibrated} \]

\[\mathcal{G} := \text{set of perfectly-calibrated functions} \]
Correctness:

\[\mu(f) = 0 \iff f \text{ is perfectly calibrated} \]

Robust Correctness (informally):

\[\mu(f) \text{ is "close" to } 0 \iff f \text{ is "close" to perfectly calibrated} \]

\[\mathcal{G} := \text{set of perfectly-calibrated functions} \]
Correctness:
\[\mu(f) = 0 \iff f \text{ is perfectly calibrated} \]

Robust Correctness (informally):
\[\mu(f) \text{ is "close" to } 0 \iff f \text{ is "close" to perfectly calibrated} \]

\[\mathcal{G} := \text{set of perfectly-calibrated functions} \]
Correctness:
\[\mu(f) = 0 \iff f \text{ is perfectly calibrated} \]

Robust Correctness (informally):
\[\mu(f) \text{ is "close" to } 0 \iff f \text{ is "close" to perfectly calibrated} \]

\[\mathcal{G} := \text{set of perfectly-calibrated functions} \]

The Calibration Distance
\[d_{\text{CE}}(f) := \min_{g \in \mathcal{G}} d_1(f, g) \]
Correctness:
\[\mu(f) = 0 \iff f \text{ is perfectly calibrated} \]

Robust Correctness (informally):
\[\mu(f) \text{ is "close" to } 0 \iff f \text{ is "close" to perfectly calibrated} \]

Robust Correctness:
\[dCE(f)^\beta \leq \mu(f) \leq dCE(f)^\alpha \]

The Calibration Distance
\[dCE(f) := \min_{g \in \mathcal{G}} d_1(f, g) \]
Why not use $dCE(f)$ as calibration measure μ?

Satisfies robust completeness:

$\mu(f)$ is "close" to 0 \iff f is "close" to perfectly calibrated

The Calibration Distance

$$dCE(f) := \min_{g \in \mathcal{G}} d_1(f, g)$$
Why not use \(dCE(f) \) as calibration measure \(\mu \)?

Satisfies robust completeness:

\[\mu(f) \text{ is "close" to 0 } \iff \text{ } f \text{ is "close" to perfectly calibrated} \]

Q: How to estimate from samples \(\{(f(x_i), y_i)\} \)?

- Both info-theoretic, and computational issues...

The Calibration Distance

\[dCE(f) := \min_{g \in \mathcal{G}} d_1(f, g) \]
New metric $dCE(f)$ intimately related to existing metrics:

- $kCE(f)$: kernel calibration / MMCE [Kumar Sarawagi Jain 2018]
- $smCE(f)$: smooth calibration [Foster Hart 2018]
- $intCE(f)$: interval calibration
New metric $dCE(f)$ intimately related to existing metrics:

- $kCE(f)$: kernel calibration / MMCE [Kumar Sarawagi Jain 2018]
- $smCE(f)$: smooth calibration [Foster Hart 2018]
- $intCE(f)$: interval calibration

Theorem: For $\mu \in \{kCE, smCE, intCE\}$:

$$\mu^2 \leq dCE \leq \mu^{1/3}$$
Unification

New metric $\text{dCE}(f)$ intimately related to existing metrics:

- $\text{kCE}(f)$: kernel calibration / MMCE [Kumar Sarawagi Jain 2018]
- $\text{smCE}(f)$: smooth calibration [Foster Hart 2018]
- $\text{intCE}(f)$: interval calibration

Theorem: For $\mu \in \{ \text{kCE}, \text{smCE}, \text{intCE} \}$:

$$\mu^2 \leq \text{dCE} \leq \mu^{1/3}$$

Takeaway:

1. Estimate dCE from samples
2. Prior metrics are related
Practical Takeaways

Measure calibration with either:

1. Kernel Calibration Error

2. Interval Calibration Error (modification of binnedECE)
Kernel Calibration Error

$$ECE_D(f) := \sup_{w:[0,1] \to [-1,1]} \mathbb{E}_{(f,y) \sim \mathcal{D}_f} [w(f)(y - f)]$$
Kernel Calibration Error

$$ECE_D(f) := \sup_{w: [0,1] \rightarrow [-1,1]} \mathbb{E}_{(f,y) \sim D_f} [w(f)(y - f)]$$

"Residual": \(r(f) := \mathbb{E}[y \mid f] - f \)
Kernel Calibration Error

$$E_{CE_D}(f) := \sup_{w: [0,1] \rightarrow [-1,1]} \mathbb{E}_{(f,y) \sim D_f} [w(f)(y - f)]$$

"Residual": $$r(f) := \mathbb{E}[y | f] - f$$
Kernel Calibration Error

\[
ECE_D(f) := \sup_{w: [0,1] \rightarrow [-1,1]} \mathbb{E}_{(f,y) \sim D_f} [w(f)(y - f)]
\]

"Residual":
\[
r(f) := \mathbb{E}[y \mid f] - f
\]
Kernel Calibration Error

\[ECE_D(f) := \sup_{w: [0,1] \to [-1,1]} \mathbb{E}_{(f,y) \sim D_f} \left[w(f)(y - f) \right] \]

\[kCE_D(f) := \sup_{w: \|w\| \leq 1} \mathbb{E}_{(f,y) \sim D_f} \left[w(f)(y - f) \right] \]

“Residual”: \(r(f) := \mathbb{E}[y | f] - f \)
Kernel Calibration Error: Sample Estimation

Given: Samples \((f(x_i), y_i) =: (f_i, y_i)\)

Residuals: \((f_i, r_i)\) for \(r_i := (y_i - f_i)\)
Kernel Calibration Error: Sample Estimation

Given: Samples \((f(x_i), y_i) =: (f_i, y_i)\)

Residuals: \((f_i, r_i)\) for \(r_i := (y_i - f_i)\)

\[
\hat{\text{kCE}_D}(f) = \sqrt{\frac{1}{n^2} \sum_{i,j} r_i r_j K(f_i, f_j)} = \|r\|_{K(f,f)}
\]
Kernel Calibration Error: Sample Estimation

Given: Samples \((f(x_i), y_i) =: (f_i, y_i)\)

Residuals: \((f_i, r_i)\) for \(r_i := (y_i - f_i)\)

\[
\widehat{\text{kCE}_D}(f) = \sqrt{\frac{1}{n^2} \sum_{i,j} r_i r_j K(f_i, f_j)} = \|r\|_{K(f,f)}
\]
Kernel Calibration Error: Sample Estimation

Given: Samples \((f(x_i), y_i) =: (f_i, y_i)\)

Residuals: \((f_i, r_i)\) for \(r_i := (y_i - f_i)\)

\[
\hat{\text{kCED}}(f) = \sqrt{\frac{1}{n^2} \sum_{i,j} r_i r_j K(f_i, f_j)} = \|r\|_{K(f,f)}
\]

\[
= \sqrt{\langle r, \text{smooth}_K(r) \rangle}
\]
Kernel Calibration Error: Sample Estimation

Given: Samples $(f(x_i), y_i) =: (f_i, y_i)$

Residuals: (f_i, r_i) for $r_i := (y_i - f_i)$

$$\hat{KCE}_D(f) = \sqrt{\frac{1}{n^2} \sum_{i,j} r_i r_j K(f_i, f_j) = \|r\|_{K(f,f)}}$$

- Linear-time estimation: sub-sample $\Theta(n)$ terms
- Requires Laplace kernel
Interval Calibration

\[\text{binnedECE}(f, \mathcal{I}) := \text{ECE}(\text{round}_\mathcal{I}(f)) \]

binnedECE: Unclear how to choose bins (any fixed choice violates continuity & correctness)
Interval Calibration

\[\text{binnedECE}(f, \mathcal{I}) := \text{ECE}(\text{round}_{\mathcal{I}}(f)) \]

\[\text{binnedECE}: \text{Unclear how to choose bins (any fixed choice violates continuity & correctness)} \]

But, adding a “width regularizer” guarantees upper-bound. For all interval-partitions:

\[\text{dCE}(f) \leq \text{binnedECE}(f, \mathcal{I}) + \text{width}(\mathcal{I}) \]
Interval Calibration

$$dCE(f) \leq \text{binnedECE}(f, I) + \text{width}(I)$$
Interval Calibration

\[dCE(f) \leq \text{binnedECE}(f, I) + \text{width}(I) \]

Best-possible upper-bound:

\[\text{intCE}(f) := \inf_{I: \text{Interval partition}} (\text{binnedECE}(f, I) + \text{width}(I)) \]
Interval Calibration

\[dCE(f) \leq \text{binnedECE}(f, I) + \text{width}(I) \]

Best-possible upper-bound:

\[\text{intCE}(f) := \inf_{I: \text{Interval partition}} \left(\text{binnedECE}(f, I) + \text{width}(I) \right) \]

Can we get a lower-bound?
Interval Calibration

\[dCE(f) \leq \text{binnedECE}(f, \mathcal{I}) + \text{width}(\mathcal{I}) \]

Best-possible upper-bound:

\[\text{intCE}(f) := \inf_{\mathcal{I}: \text{Interval partition}} (\text{binnedECE}(f, \mathcal{I}) + \text{width}(\mathcal{I})) \]

Can we get a lower-bound?

\[\frac{1}{16} \text{intCE}(f)^2 \leq dCE(f) \leq \text{intCE}(f) \]
Interval Calibration

\[\text{intCE}(f) := \inf_{\mathcal{I}: \text{Interval partition}} (\text{binnedECE}(f, \mathcal{I}) + \text{width}(\mathcal{I})) \]

Computationally, sufficient to minimize over \(i \in \mathbb{N} \) :

1. Construct regular intervals of width \(2^{-i} \)
2. Randomly shift intervals (together)
3. Compute \(\text{binnedECE}(f, \mathcal{I}) + \text{width}(\mathcal{I}) \)

This gives same guarantees!
Practical Takeaways

Measure calibration with either:

1. Kernel Calibration Error

2. Interval Calibration Error

or, if you must use binnedECE, add max-interval-width "regularizer"
In Practice: $kCE \approx \text{binnedECE}$