Counterexamples in (Introductory) Algebra

Preetum Nakkiran

Isomorphism of factors does not imply isomorphism of quotient groups

ie: $H \cong K \not \Longrightarrow G/H \cong G/K$

Let $G = \mathbb{Z}_4 \times \mathbb{Z}_2$, with $H = \langle (\bar{2}, \bar{0}) \rangle$ and $K = (\bar{0}, \bar{1})$.

Then $H \cong K \cong \mathbb{Z}_2$ but $G/K \cong \mathbb{Z}_4 \ncong \mathbb{Z}_2 \times \mathbb{Z}_2 \cong G/H$

Isomorphism of quotient groups does not imply isomorphism of factors

ie: $G/H \cong G/K \not \Longrightarrow H \cong K$

(D&F 3.3.8): For prime p, let G be the group of p-power roots of unity. And $\phi: G \to G$ be the surjective homomorphism $z \mapsto z^p$. Then $G/\ker \phi \cong G$.

So let $K = \ker \phi$ and H be trivial. Then $G/K \cong G \cong G/H$, but $H \not\cong K$ (because $\ker \phi$ is non-trivial).

A group can be isomorphic to a proper quotient of itself

Same example as above.

The image of an ideal may not be an ideal

ie: I ideal $\iff \phi(I)$ ideal for homomorphism ϕ

Let $\phi: \mathbb{Z} \to \mathbb{Z}[x]$ by inclusion. Then $2\mathbb{Z}$ is ideal in \mathbb{Z} , but not in $\mathbb{Z}[x]$ $(2x \notin 2\mathbb{Z})$.

An infinite group in which every element has finite order but for each positive integer n there is an element of order n

 $\prod_{n\in\mathbb{N}} Z_n$

A group such that every finite group is isomorphic to some subgroup

1) The direct product of all finite groups, or 2) The group of all bijections $\mathbb{N} \to \mathbb{N}$ (then applying Cayley's Theorem)

A nontrivial group G s.t. $G \cong G \times G$

$$G = Z_2 \times Z_2 \times \cdots$$
, with isomorphism $(g_1, g_2, g_3, \ldots) \mapsto ((g_1, g_3, g_5, \ldots), (g_2, g_4, g_6, \ldots))$

A group of order n may not have a subgroup of order k for all k|n

The alternating group A_4 has order 12, but no element of order 6 (all elements have order 1, 2, or 3).

Direct product of Hamiltonian Groups¹ may not be Hamiltonian

In
$$Q_8 \times Q_8$$
, the subgroup $\langle (i,j) \rangle$ is not normal because $\langle (i,j) \rangle = \{(1,1), (i,j), (-1,-1), (-i,-j)\}$ but $(j,1)(i,j)(j,1)^{-1} = (-i,j) \notin \langle (i,j) \rangle$

Subgroups of finitely-generated groups may not be finitely generated

The commutator subgroup of the free group on two elements $F(\lbrace x,y\rbrace)$ cannot be finitely generated (proof omitted).

¹non-abelian group where every subgroup is normal