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erasure codes, instead of replication, for fault- Joint work with: KV Rashmi, Jingyan Wang, Nihar Joint work with: KV Rashmi Joint work with: Nihar Shah and KV Rashmi

tole_range. While traditional C(_)des provide significant Shah, and Kannan Ramchandran In preparation. In IEEE GLOBECOM 2014.
savings In storage, they require large network In USENIX FAST 2015, N
bandwidth to reconstruct a small amount of missing Problem: The additional structure of MSR codes Problem: When data gets updated, can stale

data (eg, when a machine fails). A recently- Problem: MSR codes are optimal w.r.t. storage often comes at the cost of code-complexity. nodes get updated in a decentralized fashion?
proposed class of “regenerating codes” address this & repair-bandwidth. But they have high disk I/O (Stale nodes update from updated nodes,

bandwidth problem. in repair: without central controller).

* (n, k) Reed-Solomon code:
blocksize = k symbols.

Here we investigate various theoretical and — problem

practical aspects of regenerating codes. » Same redundancy MSR code:
e i st blocksize = k2 symbols e
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. Differences from Node Repair:
Machines: °ee SESIR “Reconstruct-by-transfer (RBT)” : : .
N Our Results: » Node repair: Assumes total node failure — no

s sarity . N « MSR codes with sparsity O(k) per-symbol. useful stored data

Failure model: Individual machines fail, but Can we construct codes optimal for (Based on Product-Matrix codes). » Oblivious update: Stale node has stale data

we want our data to survive. Want to recover disk I/0 as well? * General connection between “repair-Dy- — potentially useful
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the data from any k (of n) surviving machines. transfer” (RBT) and sparsity. .
(n.K) Reed-Solomon code: Our Results: » General framework for understanding ) .

. . - R systematic-remapping in MSR codes. Can we do (much) better than node
. Problem: When one node fails (“node E'XI?(“CH transformation to locally-minimize ! repair?
repair’), must download entire data & re- dis I( O. L _ Generator matrix
- * Algorithm to globally-minimize expected disk ) | |
encode to repair. e for parity nodes: Toy Example:
. /O (under probabilistic failure model). '
MSR regenerating code:

* Minimal “repair-bandwidth® among MDS Our algorithms provide significant reduction in
codes. |OPS consumed, ~5x for typical parameters.
» Retains fault-tolerance of RS code.
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