Regenerating Codes: Theory and Practice

Preetum Nakkiran
Department of EECS, UC Berkeley

Overview 1. Optimizing Codes for I/O, Storage & 2. Understanding and Constructing 3. Communication Complexity of
Distributed storage systems are increasingly using Bandwidth Sparse Regenerating Codes Oblivious Updates

erasure codes, instead of replication, for fault- Joint work with: KV Rashmi, Jingyan Wang, Nihar Joint work with: KV Rashmi Joint work with: Nihar Shah and KV Rashmi

tole_range. While traditional C(_)des provide significant Shah, and Kannan Ramchandran In preparation. In IEEE GLOBECOM 2014.
savings In storage, they require large network In USENIX FAST 2015, N
bandwidth to reconstruct a small amount of missing Problem: The additional structure of MSR codes Problem: When data gets updated, can stale

data (eg, when a machine fails). A recently- Problem: MSR codes are optimal w.r.t. storage often comes at the cost of code-complexity. nodes get updated in a decentralized fashion?
proposed class of “regenerating codes” address this & repair-bandwidth. But they have high disk I/O (Stale nodes update from updated nodes,

bandwidth problem. in repair: without central controller).

* (n, k) Reed-Solomon code:
blocksize = k symbols.

Here we investigate various theoretical and — problem

practical aspects of regenerating codes. » Same redundancy MSR code:
e i st blocksize = k2 symbols e
MSR framework: 2 read transter > o y ' Qxh o
(slower encoding)

. _16MB 1/0 Network BW

B aC k g r O u n d Helper consumed consumed initial controller broadcast back online oblivious update

Erasure Codes In Distributed Storage: One node Stale node

- ~ Allnodes store ¢ine during “obliviously” updates

it fila i ‘I’ ‘r’ ded data.
Split file into 'k’ blocks, and compute r 1o MR Can we construct and understand the encoded dala update . from other nodes.
We would like: 2
16 MB

addltlpnal parities. Store blocks on n=k+r read&transfer> structure of sparse regenerating codes?
machines. /0 _ Network BW \- J

consumed consumed

Helper

. Differences from Node Repair:
Machines: °ee SESIR “Reconstruct-by-transfer (RBT)” : : .
N Our Results: » Node repair: Assumes total node failure — no

s sarity . N « MSR codes with sparsity O(k) per-symbol. useful stored data

Failure model: Individual machines fail, but Can we construct codes optimal for (Based on Product-Matrix codes). » Oblivious update: Stale node has stale data

we want our data to survive. Want to recover disk I/0 as well? * General connection between “repair-Dy- — potentially useful

- b} -
the data from any k (of n) surviving machines. transfer” (RBT) and sparsity. .
(n.K) Reed-Solomon code: Our Results: » General framework for understanding) .

. . - R systematic-remapping in MSR codes. Can we do (much) better than node
. Problem: When one node fails (“node E'XI?(“CH transformation to locally-minimize ! repair?
repair’), must download entire data & re- dis I(O. L _ Generator matrix
- * Algorithm to globally-minimize expected disk) | |
encode to repair. e for parity nodes: Toy Example:
. /O (under probabilistic failure model). '
MSR regenerating code:

* Minimal “repair-bandwidth® among MDS Our algorithms provide significant reduction in
codes. |OPS consumed, ~5x for typical parameters.
» Retains fault-tolerance of RS code.
before (dense) after (sparse)

ey blocksize i Our Results:
S BLITY » Lower-bounds for linear codes:
| | | » Total download = 2 x (change size)
z;‘ég‘éicrtlg_/'at”x » Lower-bounds for linear (n,k) MDS codes:

| » Total download = 2k x (change size)
» Matching upper-bounds (code constructions)

RS PM RBT o T - for both cases.

X k% X

)

=
o
o

1

g Q
1 ./’ / decoding

® ;
: {o@ node
s

I Total transfer :
: =96 MB :
- RS PM RBT

. RBT: Same bandwidth RBT: Minimizes Disk IO
as MSR ("PM”)

(0]
o

(@)
o

S
o

N
o

Data transferred (MB

o

Amount of data read (MB)

Reed-Solomon MSR framework

