
Regenerating Codes: Theory and Practice
Preetum Nakkiran

Department of EECS, UC Berkeley

Background

Erasure Codes in Distributed Storage:

Split file into ‘k’ blocks, and compute ‘r’

additional parities. Store blocks on n=k+r

machines.

Failure model: Individual machines fail, but

we want our data to survive. Want to recover

the data from any k (of n) surviving machines.

(n,k) Reed-Solomon code:

• Problem: When one node fails (“node

repair”), must download entire data & re-

encode to repair.

MSR regenerating code:

• Minimal “repair-bandwidth” among MDS

codes.

• Retains fault-tolerance of RS code.

Overview

Distributed storage systems are increasingly using

erasure codes, instead of replication, for fault-

tolerance. While traditional codes provide significant

savings in storage, they require large network

bandwidth to reconstruct a small amount of missing

data (eg, when a machine fails). A recently-

proposed class of “regenerating codes” address this

bandwidth problem.

Here we investigate various theoretical and

practical aspects of regenerating codes.

3. Communication Complexity of

Oblivious Updates

Joint work with: Nihar Shah and KV Rashmi

In IEEE GLOBECOM 2014.

Problem: When data gets updated, can stale

nodes get updated in a decentralized fashion?

(Stale nodes update from updated nodes,

without central controller).

1. Optimizing Codes for I/O, Storage &

Bandwidth

Joint work with: KV Rashmi, Jingyan Wang, Nihar

Shah, and Kannan Ramchandran

In USENIX FAST 2015.

Problem: MSR codes are optimal w.r.t. storage

& repair-bandwidth. But they have high disk I/O

in repair:

2. Understanding and Constructing

Sparse Regenerating Codes

Joint work with: KV Rashmi

In preparation.

Problem: The additional structure of MSR codes

often comes at the cost of code-complexity.

• (n, k) Reed-Solomon code:

 blocksize = k symbols.

• Same redundancy MSR code:

 blocksize = k2 symbols.

(slower encoding)

Differences from Node Repair:

• Node repair: Assumes total node failure – no

useful stored data

• Oblivious update: Stale node has stale data

– potentially useful

Can we do (much) better than node

repair?

Our Results:

• Lower-bounds for linear codes:

 Total download ≥ 2 × (change size)

• Lower-bounds for linear (n,k) MDS codes:

 Total download ≥ 2k × (change size)

• Matching upper-bounds (code constructions)

for both cases.

Toy Example:

Can we construct codes optimal for

disk I/O as well?

Our Results:

• Explicit transformation to locally-minimize

disk I/O.

• Algorithm to globally-minimize expected disk

I/O (under probabilistic failure model).

Our algorithms provide significant reduction in

IOPS consumed, ~5x for typical parameters.

Can we construct and understand the

structure of sparse regenerating codes?

Our Results:

• MSR codes with sparsity O(k) per-symbol.

(Based on Product-Matrix codes).

• General connection between “repair-by-

transfer” (RBT) and sparsity.

• General framework for understanding

systematic-remapping in MSR codes.

RBT: Same bandwidth

as MSR (“PM”)

RBT: Minimizes Disk IO

All nodes store

encoded data.

One node

offline during

update .

1 k k+1 n … … 2 Machines:

data parity

Stale node

“obliviously” updates

from other nodes.

Generator matrix

for parity nodes:

before (dense) after (sparse)

Product-Matrix

encoding:

